Canary: An Interactive and Query-Based Approach to Extract Requirements from Online Forums

Georgi M. Kanchev, Pradeep K. Murukannaiah, A. Chopra, P. Sawyer
{"title":"Canary: An Interactive and Query-Based Approach to Extract Requirements from Online Forums","authors":"Georgi M. Kanchev, Pradeep K. Murukannaiah, A. Chopra, P. Sawyer","doi":"10.1109/RE.2017.84","DOIUrl":null,"url":null,"abstract":"Interactions among stakeholders and engineers is key to Requirements engineering (RE). Increasingly, such interactions take place online, producing large quantities of qualitative (natural language) and quantitative (e.g., votes) data. Although a rich source of requirements-related information, extracting such information from online forums can be nontrivial.We propose Canary, a tool-assisted approach, to facilitate systematic extraction of requirements-related information from online forums via high-level queries. Canary (1) adds structure to natural language content on online forums using an annotation schema combining requirements and argumentation ontologies, (2) stores the structured data in a relational database, and (3) compiles high-level queries in Canary syntax to SQL queries that can be run on the relational database.We demonstrate key steps in Canary workflow, including (1) extracting raw data from online forums, (2) applying annotations to the raw data, and (3) compiling and running interesting Canary queries that leverage the social aspect of the data.","PeriodicalId":176958,"journal":{"name":"2017 IEEE 25th International Requirements Engineering Conference (RE)","volume":"958 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th International Requirements Engineering Conference (RE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RE.2017.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Interactions among stakeholders and engineers is key to Requirements engineering (RE). Increasingly, such interactions take place online, producing large quantities of qualitative (natural language) and quantitative (e.g., votes) data. Although a rich source of requirements-related information, extracting such information from online forums can be nontrivial.We propose Canary, a tool-assisted approach, to facilitate systematic extraction of requirements-related information from online forums via high-level queries. Canary (1) adds structure to natural language content on online forums using an annotation schema combining requirements and argumentation ontologies, (2) stores the structured data in a relational database, and (3) compiles high-level queries in Canary syntax to SQL queries that can be run on the relational database.We demonstrate key steps in Canary workflow, including (1) extracting raw data from online forums, (2) applying annotations to the raw data, and (3) compiling and running interesting Canary queries that leverage the social aspect of the data.
金丝雀:从在线论坛中提取需求的交互式和基于查询的方法
涉众和工程师之间的交互是需求工程(RE)的关键。这种互动越来越多地发生在网上,产生大量定性(自然语言)和定量(如投票)数据。尽管有丰富的与需求相关的信息来源,但是从在线论坛中提取此类信息是非常重要的。我们提出了Canary,这是一种工具辅助的方法,通过高级查询从在线论坛中系统地提取与需求相关的信息。Canary(1)使用结合需求和论证本体的注释模式为在线论坛上的自然语言内容添加结构,(2)将结构化数据存储在关系数据库中,(3)将Canary语法的高级查询编译为可以在关系数据库上运行的SQL查询。我们演示了Canary工作流程中的关键步骤,包括(1)从在线论坛中提取原始数据,(2)对原始数据应用注释,以及(3)编译和运行利用数据社交方面的有趣的Canary查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信