{"title":"On the chromatic number of a subgraph of the Kneser graph","authors":"Bart Litjens , Sven Polak , Bart Sevenster , Lluís Vena","doi":"10.1016/j.endm.2018.06.039","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>n</em> and <em>k</em> be positive integers with <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi></math></span>. Consider a circle <em>C</em> with <em>n</em> points <span><math><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span> in clockwise order. The <em>interlacing graph</em> <span><math><msub><mrow><mi>IG</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> is the graph with vertices corresponding to <em>k</em>-subsets of [<em>n</em>] that do not contain two adjacent points on <em>C</em>, and edges between <em>k</em>-subsets <em>P</em> and <em>Q</em> if they <em>interlace</em>: after removing the points in <em>P</em> from <em>C</em>, the points in <em>Q</em> are in different connected components. In this paper we prove that the circular chromatic number of <span><math><msub><mrow><mi>IG</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> is equal to <span><math><mi>n</mi><mo>/</mo><mi>k</mi></math></span>, hence the chromatic number is <span><math><mo>⌈</mo><mi>n</mi><mo>/</mo><mi>k</mi><mo>⌉</mo></math></span>, and that its independence number is <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></math></span>.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.039","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318301306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5
Abstract
Let n and k be positive integers with . Consider a circle C with n points in clockwise order. The interlacing graph is the graph with vertices corresponding to k-subsets of [n] that do not contain two adjacent points on C, and edges between k-subsets P and Q if they interlace: after removing the points in P from C, the points in Q are in different connected components. In this paper we prove that the circular chromatic number of is equal to , hence the chromatic number is , and that its independence number is .
期刊介绍:
Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.