On Computing Non-negative Loop-Free Edge-Bipartite Graphs

Grzegorz Marczak, D. Simson, Katarzyna Zając
{"title":"On Computing Non-negative Loop-Free Edge-Bipartite Graphs","authors":"Grzegorz Marczak, D. Simson, Katarzyna Zając","doi":"10.1109/SYNASC.2013.16","DOIUrl":null,"url":null,"abstract":"We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with n ≥ 2 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum specc<sub>Δ</sub> ⊆ ℂ. Here, we discuss Coxeter spectral analysis problems of non-negative edge-bipartite graphs of corank s ≤ n-1, which means that the symmetric Gram matrix G<sub>Δ</sub> ∈ M<sub>n</sub>(ℤ) is positive semi-definite of rank n-s ≤ n. In particular, we study in details the loop-free edge-bipartite graphs of corank s = n - 1. We present algorithms that generate all such edge-bipartite graphs of a given size and, using symbolic and numerical computer calculations in Python, and we obtain their complete classification in relation with Diophantine geometry problems. We also construct algorithms that allow us to classify all connected loop-free non-negative edge-bipartite graphs Δ, with a fixed number n ≥ 2 of vertices, by means of their Coxeter spectra specc<sub>Δ</sub>.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We continue the Coxeter spectral study of finite connected loop-free edge-bipartite graphs Δ, with n ≥ 2 vertices (a class of signed graphs), started in [SIAM J. Discrete Math., 27(2013), 827-854] by means of the complex Coxeter spectrum speccΔ ⊆ ℂ. Here, we discuss Coxeter spectral analysis problems of non-negative edge-bipartite graphs of corank s ≤ n-1, which means that the symmetric Gram matrix GΔ ∈ Mn(ℤ) is positive semi-definite of rank n-s ≤ n. In particular, we study in details the loop-free edge-bipartite graphs of corank s = n - 1. We present algorithms that generate all such edge-bipartite graphs of a given size and, using symbolic and numerical computer calculations in Python, and we obtain their complete classification in relation with Diophantine geometry problems. We also construct algorithms that allow us to classify all connected loop-free non-negative edge-bipartite graphs Δ, with a fixed number n ≥ 2 of vertices, by means of their Coxeter spectra speccΔ.
非负无环边二部图的计算
我们继续有限连通无环边二部图Δ的Coxeter谱研究,n≥2个顶点(一类有符号图),开始于[SIAM J.离散数学]。, 27(2013), 827-854]利用复Coxeter谱speccΔ本文讨论了corank s≤n-1的非负边二部图的Coxeter谱分析问题,这意味着对称Gram矩阵GΔ∈Mn(n)是秩n-s≤n的正半定的。特别地,我们详细研究了corank s = n-1的无环边二部图。我们提出了生成给定大小的所有这些边二部图的算法,并使用Python中的符号和数值计算机计算,我们获得了与丢芬图几何问题相关的完整分类。我们还构建了一种算法,允许我们对所有连接的无环非负边二部图Δ进行分类,这些图具有固定数目n≥2个顶点,通过它们的Coxeter谱speccΔ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信