Visual saliency detection based on region contrast and guided filter

Liqiang Liu, Jianzhong Cao, Yuefeng Niu, Huinan Guo
{"title":"Visual saliency detection based on region contrast and guided filter","authors":"Liqiang Liu, Jianzhong Cao, Yuefeng Niu, Huinan Guo","doi":"10.1109/CIAPP.2017.8167232","DOIUrl":null,"url":null,"abstract":"The main challenge of previous saliency detection method is the low quality of obtained saliency map which missed the edge and texture information easily. So it cannot reflect the integrated image salient information. Considering this problem, we propose a novel saliency measure method which combine region contrast and fast guided filter. This method utilizes region contrast method to obtain initial saliency maps. Then we optimize the saliency maps by using the fast guided filter. Extensive experimental results on natural image show the effectiveness of the proposed method. One aspect, the obtained final saliency maps have obvious advantages in dealing with the texture and weakening the inconsequential region. Another aspect, evaluation on the two databases validates that our method achieves superior results and outperforms compared previous approach in both precision and recall.","PeriodicalId":187056,"journal":{"name":"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIAPP.2017.8167232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The main challenge of previous saliency detection method is the low quality of obtained saliency map which missed the edge and texture information easily. So it cannot reflect the integrated image salient information. Considering this problem, we propose a novel saliency measure method which combine region contrast and fast guided filter. This method utilizes region contrast method to obtain initial saliency maps. Then we optimize the saliency maps by using the fast guided filter. Extensive experimental results on natural image show the effectiveness of the proposed method. One aspect, the obtained final saliency maps have obvious advantages in dealing with the texture and weakening the inconsequential region. Another aspect, evaluation on the two databases validates that our method achieves superior results and outperforms compared previous approach in both precision and recall.
基于区域对比和引导滤波的视觉显著性检测
以往的显著性检测方法面临的主要挑战是得到的显著性图质量不高,容易遗漏边缘和纹理信息。因此,它不能反映集成图像的显著信息。针对这一问题,提出了一种结合区域对比和快速引导滤波的显著性测量方法。该方法利用区域对比法获得初始显著性图。然后利用快速导向滤波器对显著性图进行优化。在自然图像上的大量实验结果表明了该方法的有效性。一方面,得到的最终显著性图在处理纹理和弱化无关区域方面具有明显的优势。另一方面,在两个数据库上的评估验证了我们的方法取得了更好的结果,在准确率和召回率方面都优于之前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信