Improving Core Topics Discovery in Semantic Markup Literature: A Combined Approach

Carlos Montenegro, Rosa Navarrete
{"title":"Improving Core Topics Discovery in Semantic Markup Literature: A Combined Approach","authors":"Carlos Montenegro, Rosa Navarrete","doi":"10.1145/3378936.3378939","DOIUrl":null,"url":null,"abstract":"This research configures a corpus of articles related to the aspects being investigated in Semantic Markup, knowledge domain that has evolved and expanded over the last decade and conduct a manual process to identify the Topics being addressed. Then, it is used LDA, an unsupervised probabilistic topic model, and other tools, for automatically recognize the topics of interest within this corpus; this aims to interpret, validate and complement the results manually obtained. The results let us argue that using combined techniques contribute to improving the human expert analysis, and it is helpfully for the discovery of core topics in Semantic Markup Literature.","PeriodicalId":304149,"journal":{"name":"Proceedings of the 3rd International Conference on Software Engineering and Information Management","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Software Engineering and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378936.3378939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This research configures a corpus of articles related to the aspects being investigated in Semantic Markup, knowledge domain that has evolved and expanded over the last decade and conduct a manual process to identify the Topics being addressed. Then, it is used LDA, an unsupervised probabilistic topic model, and other tools, for automatically recognize the topics of interest within this corpus; this aims to interpret, validate and complement the results manually obtained. The results let us argue that using combined techniques contribute to improving the human expert analysis, and it is helpfully for the discovery of core topics in Semantic Markup Literature.
改进语义标记文献中的核心主题发现:一种组合方法
本研究配置了一个与语义标记中正在研究的方面相关的文章语料库,该知识领域在过去十年中已经发展和扩展,并执行手动过程来识别正在处理的主题。然后,利用无监督概率主题模型LDA等工具,自动识别语料库中感兴趣的主题;其目的是解释、验证和补充人工获得的结果。结果让我们认为,使用组合技术有助于提高人类专家分析,并且有助于发现语义标记文献中的核心主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信