{"title":"An efficient approach to prevent Battery Exhaustion Attack on BLE-based mesh networks","authors":"Zonglin Guo, I. Harris, Yutong Jiang, L. Tsaur","doi":"10.1109/ICCNC.2017.7876092","DOIUrl":null,"url":null,"abstract":"As the need for mesh networks for Internet of Things (IoT) applications grows, research in this field attracts more and more attention. Because IoT devices are primarily battery-driven, Bluetooth Low Energy (BLE) networking is appealing to conserve battery life. The importance of battery life in a mobile ad hoc network increases the sensitivity of the network to cyber-attacks intended to impact battery life. A Battery Exhaustion Attack can overwhelmingly exhaust the batteries of network nodes by making malicious service requests. In this paper, we present an intrusion detection and prevention approach for this type of attack. This approach requires the suspicious nodes to switch connection to the neighbors of its connected nodes periodically. When a suspicious node is identified as malicious, it is blacklisted to prevent future attacks. Even when a malicious node cannot be detected, its impact is distributed across the network in order to extend the overall network lifetime.","PeriodicalId":135028,"journal":{"name":"2017 International Conference on Computing, Networking and Communications (ICNC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2017.7876092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
As the need for mesh networks for Internet of Things (IoT) applications grows, research in this field attracts more and more attention. Because IoT devices are primarily battery-driven, Bluetooth Low Energy (BLE) networking is appealing to conserve battery life. The importance of battery life in a mobile ad hoc network increases the sensitivity of the network to cyber-attacks intended to impact battery life. A Battery Exhaustion Attack can overwhelmingly exhaust the batteries of network nodes by making malicious service requests. In this paper, we present an intrusion detection and prevention approach for this type of attack. This approach requires the suspicious nodes to switch connection to the neighbors of its connected nodes periodically. When a suspicious node is identified as malicious, it is blacklisted to prevent future attacks. Even when a malicious node cannot be detected, its impact is distributed across the network in order to extend the overall network lifetime.