Predicting Credit Rating Migration Employing Neural Network Models

Michael D'Rosario, Calvin Hsieh
{"title":"Predicting Credit Rating Migration Employing Neural Network Models","authors":"Michael D'Rosario, Calvin Hsieh","doi":"10.4018/IJSDS.2018100105","DOIUrl":null,"url":null,"abstract":"Credit rating migration ranks amongst the most pertinent issues concerning institutional lenders and investors alike. There are a number of studies that have employed both parametric and non-parametric methodologies to forecast credit rating migration, employing machine learning methods; and notably, artificial intelligence methods becoming increasingly popular. The present study extends upon research within the extant literature employing a novel estimation method, a neural network modelling technique, herewith the MPANN (multi-layer neural network). Consistent with the extant literature, the present article identifies that the legal framework and system of taxation enacted within a polity are pertinent to predicting rating migration. However, extending upon traditional estimation techniques the study identifies that a number of different model calibrations achieve greater predictive accuracy than traditional parametric regression. Notably, the method is able to achieve superior goodness of fit and predictive accuracy in determining credit rating migration than models employed within the extant literature.","PeriodicalId":242450,"journal":{"name":"Int. J. Strateg. Decis. Sci.","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Strateg. Decis. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSDS.2018100105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Credit rating migration ranks amongst the most pertinent issues concerning institutional lenders and investors alike. There are a number of studies that have employed both parametric and non-parametric methodologies to forecast credit rating migration, employing machine learning methods; and notably, artificial intelligence methods becoming increasingly popular. The present study extends upon research within the extant literature employing a novel estimation method, a neural network modelling technique, herewith the MPANN (multi-layer neural network). Consistent with the extant literature, the present article identifies that the legal framework and system of taxation enacted within a polity are pertinent to predicting rating migration. However, extending upon traditional estimation techniques the study identifies that a number of different model calibrations achieve greater predictive accuracy than traditional parametric regression. Notably, the method is able to achieve superior goodness of fit and predictive accuracy in determining credit rating migration than models employed within the extant literature.
利用神经网络模型预测信用评级迁移
信用评级迁移是与机构贷方和投资者最相关的问题之一。有许多研究采用参数和非参数方法来预测信用评级迁移,采用机器学习方法;值得注意的是,人工智能方法正变得越来越流行。本研究扩展了现有文献中的研究,采用了一种新的估计方法,一种神经网络建模技术,即MPANN(多层神经网络)。与现有文献一致,本文确定了政策内制定的法律框架和税收制度与预测评级迁移有关。然而,在传统估计技术的基础上,研究发现许多不同的模型校准比传统的参数回归实现了更高的预测精度。值得注意的是,与现有文献中使用的模型相比,该方法在确定信用评级迁移方面能够达到更好的拟合优度和预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信