{"title":"A strategy for time series prediction using Segment Growing Neural Gas","authors":"J. Vergara, P. Estévez","doi":"10.1109/WSOM.2017.8020033","DOIUrl":null,"url":null,"abstract":"Segment Growing Neural Gas (Segment-GNG) has been recently proposed as a new spatiotemporal quantization method for time series. Unlike traditional quantization algorithms that are prototype-based, Segment-GNG uses segments as basic units of quantization. In this paper we extend the Segment-GNG model in order to deal with time series prediction. First Segment-GNG makes a quantization of the trajectories in the state-space representation of the time series. Then a local prediction model is associated with each segment, which allows us to make predictions. The proposed model is tested with the Mackey-Glass and Lorenz chaotic time series in one-step ahead prediction tasks. The results obtained are competitive with the best results published in the literature.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Segment Growing Neural Gas (Segment-GNG) has been recently proposed as a new spatiotemporal quantization method for time series. Unlike traditional quantization algorithms that are prototype-based, Segment-GNG uses segments as basic units of quantization. In this paper we extend the Segment-GNG model in order to deal with time series prediction. First Segment-GNG makes a quantization of the trajectories in the state-space representation of the time series. Then a local prediction model is associated with each segment, which allows us to make predictions. The proposed model is tested with the Mackey-Glass and Lorenz chaotic time series in one-step ahead prediction tasks. The results obtained are competitive with the best results published in the literature.