Introducing on-the-go sensing rover for vines canopy abiotic stressors detection

S. Pasinetti, M. Maesano, E. Brunori, F. Moresi, Alessandra Bernardini, Paolo Cirenei, R. Biasi
{"title":"Introducing on-the-go sensing rover for vines canopy abiotic stressors detection","authors":"S. Pasinetti, M. Maesano, E. Brunori, F. Moresi, Alessandra Bernardini, Paolo Cirenei, R. Biasi","doi":"10.1109/MetroAgriFor55389.2022.9965084","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a new unmanned terrestrial vehicle (UTV) for the detection of vine canopy abiotic stress. The developed UTV is a customized version of an open source, open hardware robotic platform called MARRtino. The developed UTV has been equipped with a series of different cameras (RGB, FLIR and multispectral) that automatically acquire images of vineyard rows. Acquired images have been post processed applying stitching algorithms and generating the ortomosaic of the vine canopy. Structure from Motion (SFM) image technique has been then used to generate a 3D point cloud of the vineyard rows. Generated point clouds are very useful for canopy reconstruction, phenotyping and for information extraction that can be correlated to the management system of the vineyard. The size and volume of canopy can be converted into canopy indicators and linked to vegetation indices. These indices will be correlated with the ground-truth for defining the site-specific map in the vineyard and implementing a local monitoring for carry out the prescription map.","PeriodicalId":374452,"journal":{"name":"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAgriFor55389.2022.9965084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we proposed a new unmanned terrestrial vehicle (UTV) for the detection of vine canopy abiotic stress. The developed UTV is a customized version of an open source, open hardware robotic platform called MARRtino. The developed UTV has been equipped with a series of different cameras (RGB, FLIR and multispectral) that automatically acquire images of vineyard rows. Acquired images have been post processed applying stitching algorithms and generating the ortomosaic of the vine canopy. Structure from Motion (SFM) image technique has been then used to generate a 3D point cloud of the vineyard rows. Generated point clouds are very useful for canopy reconstruction, phenotyping and for information extraction that can be correlated to the management system of the vineyard. The size and volume of canopy can be converted into canopy indicators and linked to vegetation indices. These indices will be correlated with the ground-truth for defining the site-specific map in the vineyard and implementing a local monitoring for carry out the prescription map.
介绍了用于藤蔓树冠非生物胁迫源检测的移动传感探测车
本文提出了一种用于藤蔓冠层非生物胁迫检测的新型无人地面飞行器(UTV)。开发的UTV是一个名为martino的开源开放硬件机器人平台的定制版本。开发的UTV配备了一系列不同的相机(RGB, FLIR和多光谱),可以自动获取葡萄园行的图像。对采集到的图像进行后期处理,利用拼接算法生成藤冠的正切面图。然后使用动态结构(SFM)图像技术生成葡萄园行的3D点云。生成的点云对于树冠重建、表型分析以及与葡萄园管理系统相关的信息提取非常有用。冠层的大小和体积可以转化为冠层指标,并与植被指数挂钩。这些指标将与基础事实相关联,用于在葡萄园中定义特定地点的地图,并实施当地监测以执行处方地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信