A Comparison of Linear Support Vector Machine Algorithms on Large Non-Sparse Datasets

A. Lazar
{"title":"A Comparison of Linear Support Vector Machine Algorithms on Large Non-Sparse Datasets","authors":"A. Lazar","doi":"10.1109/ICMLA.2010.137","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the effectiveness of Linear Support Vector Machines (SVM) when applied to non-sparse datasets with a large number of instances. Two linear SVM algorithms are compared. The coordinate descent method (LibLinear) trains a linear SVM with the L2-loss function versus the cutting-plane algorithm (SVMperf), which uses a L1-loss function. Four Geographical Information System (GIS) datasets with over a million instances were used for this study. Each dataset consists of seven independent variables and a class label which denotes the urban areas versus the rural areas.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper demonstrates the effectiveness of Linear Support Vector Machines (SVM) when applied to non-sparse datasets with a large number of instances. Two linear SVM algorithms are compared. The coordinate descent method (LibLinear) trains a linear SVM with the L2-loss function versus the cutting-plane algorithm (SVMperf), which uses a L1-loss function. Four Geographical Information System (GIS) datasets with over a million instances were used for this study. Each dataset consists of seven independent variables and a class label which denotes the urban areas versus the rural areas.
大型非稀疏数据集上线性支持向量机算法的比较
本文证明了线性支持向量机(SVM)在处理具有大量实例的非稀疏数据集时的有效性。比较了两种线性支持向量机算法。坐标下降法(LibLinear)训练了一个具有l2损失函数的线性支持向量机,而切割平面算法(SVMperf)则使用了l1损失函数。本研究使用了四个地理信息系统(GIS)数据集,其中有超过100万个实例。每个数据集由七个独立变量和一个表示城市地区与农村地区的类别标签组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信