Web page access prediction using hierarchical clustering based on modified levenshtein distance and higher order Markov model

B T Harish Kumar, L. Vibha, K R Venugopal
{"title":"Web page access prediction using hierarchical clustering based on modified levenshtein distance and higher order Markov model","authors":"B T Harish Kumar, L. Vibha, K R Venugopal","doi":"10.1109/TENCONSPRING.2016.7519368","DOIUrl":null,"url":null,"abstract":"Web Page access prediction is a challenging task in the current scenario, which draws the attention of many researchers. Predictions need to keep track of history data to analyze the usage behavior of the users. Web Usage behavior of a user can be analyzed using the web log file of a specific website. User behavior can be analyzed by observing the navigation patterns. This approach requires user session identification, clustering the sessions into similar clusters and developing a model for prediction using the current and earlier accesses. Most of the previous works in this field have used K-Means clustering technique with Euclidean distance for computation. The drawbacks of K-Means is that deciding on the number of clusters, choosing the initial random center are difficult and the order of page visits are not considered. The proposed research work uses hierarchical clustering technique with modified Levenshtein distance, Page Rank using access time length, frequency and higher order Markov model for prediction. Experimental results prove that the proposed approach for prediction gives better accuracy over the existing techniques.","PeriodicalId":166275,"journal":{"name":"2016 IEEE Region 10 Symposium (TENSYMP)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2016.7519368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Web Page access prediction is a challenging task in the current scenario, which draws the attention of many researchers. Predictions need to keep track of history data to analyze the usage behavior of the users. Web Usage behavior of a user can be analyzed using the web log file of a specific website. User behavior can be analyzed by observing the navigation patterns. This approach requires user session identification, clustering the sessions into similar clusters and developing a model for prediction using the current and earlier accesses. Most of the previous works in this field have used K-Means clustering technique with Euclidean distance for computation. The drawbacks of K-Means is that deciding on the number of clusters, choosing the initial random center are difficult and the order of page visits are not considered. The proposed research work uses hierarchical clustering technique with modified Levenshtein distance, Page Rank using access time length, frequency and higher order Markov model for prediction. Experimental results prove that the proposed approach for prediction gives better accuracy over the existing techniques.
基于改进levelshtein距离和高阶马尔可夫模型的网页访问预测
网页访问预测是当前场景下一项具有挑战性的任务,引起了许多研究者的关注。预测需要跟踪历史数据来分析用户的使用行为。Web通过特定网站的Web日志文件,可以分析用户的使用行为。用户行为可以通过观察导航模式来分析。这种方法需要识别用户会话,将会话聚类到类似的集群中,并使用当前和以前的访问开发预测模型。该领域以前的工作大多采用欧氏距离的k均值聚类技术进行计算。K-Means的缺点是很难确定簇的数量,选择初始随机中心,并且不考虑页面访问的顺序。本文采用改进Levenshtein距离的分层聚类技术,利用访问时间长度、频率和高阶马尔可夫模型进行预测。实验结果表明,与现有的预测方法相比,该方法具有更好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信