Context Encoder Network with Channel-Wise Attention Mechanism for Nerve Fibers Detection in Corneal Confocal Microscopy Images

Wenyuan Li, Zheng Tang, Lulu Zhao, Wanyong Tian, Taotao Qi
{"title":"Context Encoder Network with Channel-Wise Attention Mechanism for Nerve Fibers Detection in Corneal Confocal Microscopy Images","authors":"Wenyuan Li, Zheng Tang, Lulu Zhao, Wanyong Tian, Taotao Qi","doi":"10.1109/ACAIT56212.2022.10137928","DOIUrl":null,"url":null,"abstract":"Diabetic peripheral neuropathy (DPN), one of the common long-term complications of diabetes, may affect the physical condition and quality of life of patients. Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic imaging technique that can be used to observe the form of nerve fibers in sub-basal corneal nerve plexus directly. Analysis of the nerve fibers in CCM images quantifies features of nerve fibers, can apply to clinical diagnosis of DPN. This paper presents an attention deep learning model for detecting nerve fibers from CCM images, which combine context encoder network and squeeze-and-excitation networks. The algorithm with attention mechanism can solve the problem of the segmentation result is easily influenced by high level noise in CCM images and imbalance of nerve fiber pixels and background pixels to a certain degree. The proposed algorithm shows the best performance among common image segmentation deep learning model.","PeriodicalId":398228,"journal":{"name":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACAIT56212.2022.10137928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic peripheral neuropathy (DPN), one of the common long-term complications of diabetes, may affect the physical condition and quality of life of patients. Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic imaging technique that can be used to observe the form of nerve fibers in sub-basal corneal nerve plexus directly. Analysis of the nerve fibers in CCM images quantifies features of nerve fibers, can apply to clinical diagnosis of DPN. This paper presents an attention deep learning model for detecting nerve fibers from CCM images, which combine context encoder network and squeeze-and-excitation networks. The algorithm with attention mechanism can solve the problem of the segmentation result is easily influenced by high level noise in CCM images and imbalance of nerve fiber pixels and background pixels to a certain degree. The proposed algorithm shows the best performance among common image segmentation deep learning model.
角膜共聚焦显微镜图像中神经纤维检测的基于通道注意机制的上下文编码器网络
糖尿病周围神经病变(DPN)是糖尿病常见的长期并发症之一,影响患者的身体状况和生活质量。角膜共聚焦显微镜(CCM)是一种快速无创的眼科成像技术,可以直接观察角膜基底下神经丛神经纤维的形态。CCM图像中神经纤维的分析量化了神经纤维的特征,可用于DPN的临床诊断。本文提出了一种结合上下文编码器网络和挤压激励网络的CCM图像神经纤维检测注意深度学习模型。该算法具有注意机制,可以解决CCM图像中容易受到高噪声影响,以及神经纤维像素与背景像素在一定程度上不平衡的问题。该算法在常用的图像分割深度学习模型中表现出最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信