An Exploration into the Benefits of the CLIP model for Lifelog Retrieval

Ly-Duyen Tran, Naushad Alam, Yvette Graham, L. K. Vo, N. T. Diep, Binh T. Nguyen, Liting Zhou, C. Gurrin
{"title":"An Exploration into the Benefits of the CLIP model for Lifelog Retrieval","authors":"Ly-Duyen Tran, Naushad Alam, Yvette Graham, L. K. Vo, N. T. Diep, Binh T. Nguyen, Liting Zhou, C. Gurrin","doi":"10.1145/3549555.3549593","DOIUrl":null,"url":null,"abstract":"In this paper, we attempt to fine-tune the CLIP (Contrastive Language-Image Pre-Training) model on the Lifelog Question Answering dataset (LLQA) to investigate retrieval performance of the fine-tuned model over the zero-shot baseline model. We train the model adopting a weight space ensembling approach using a modified loss function to take into account the differences in our dataset (LLQA) when compared with the dataset the CLIP model was originally pretrained on. We further evaluate our fine-tuned model using visual as well as multimodal queries on multiple retrieval tasks, demonstrating improved performance over the zero-shot baseline model.","PeriodicalId":191591,"journal":{"name":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549555.3549593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we attempt to fine-tune the CLIP (Contrastive Language-Image Pre-Training) model on the Lifelog Question Answering dataset (LLQA) to investigate retrieval performance of the fine-tuned model over the zero-shot baseline model. We train the model adopting a weight space ensembling approach using a modified loss function to take into account the differences in our dataset (LLQA) when compared with the dataset the CLIP model was originally pretrained on. We further evaluate our fine-tuned model using visual as well as multimodal queries on multiple retrieval tasks, demonstrating improved performance over the zero-shot baseline model.
生命日志检索CLIP模型的优势探讨
在本文中,我们尝试在Lifelog问答数据集(LLQA)上对CLIP(对比语言图像预训练)模型进行微调,以研究微调模型在零射击基线模型上的检索性能。我们采用加权空间集成方法训练模型,使用改进的损失函数来考虑我们的数据集(LLQA)与CLIP模型最初预训练的数据集的差异。我们在多个检索任务上使用视觉和多模态查询进一步评估了我们的微调模型,展示了比零射击基线模型更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信