Robust regression based training of ANFIS

R. Kothari
{"title":"Robust regression based training of ANFIS","authors":"R. Kothari","doi":"10.1109/NAFIPS.1999.781765","DOIUrl":null,"url":null,"abstract":"The Adaptive Neuro Fuzzy Inference System (ANFIS) is an attractive compromise between the adaptability of a neural network and the interpretability of a fuzzy inference system. Typically, the membership functions of some of the variables can be determined a priori based on domain knowledge. Membership functions of the other variables are adapted using a hybrid learning rule. The hybrid learning rule is based on a decomposition of the parameter set and learning is based on interleaving of two phases. In one phase, the consequent parameters are adjusted using a least squares algorithm, assuming the premise parameters are fixed. In the second phase the premise parameters are adjusted using gradient descent, assuming the consequent parameters are fixed. However, the least squares algorithm used in adjusting the consequent parameters is susceptible to outliers and often leads to premise parameters (membership functions) that are less meaningful. We study this effect using noisy data sets and propose a hybrid learning algorithm based on robust regression for training the ANFIS.","PeriodicalId":335957,"journal":{"name":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.1999.781765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Adaptive Neuro Fuzzy Inference System (ANFIS) is an attractive compromise between the adaptability of a neural network and the interpretability of a fuzzy inference system. Typically, the membership functions of some of the variables can be determined a priori based on domain knowledge. Membership functions of the other variables are adapted using a hybrid learning rule. The hybrid learning rule is based on a decomposition of the parameter set and learning is based on interleaving of two phases. In one phase, the consequent parameters are adjusted using a least squares algorithm, assuming the premise parameters are fixed. In the second phase the premise parameters are adjusted using gradient descent, assuming the consequent parameters are fixed. However, the least squares algorithm used in adjusting the consequent parameters is susceptible to outliers and often leads to premise parameters (membership functions) that are less meaningful. We study this effect using noisy data sets and propose a hybrid learning algorithm based on robust regression for training the ANFIS.
基于鲁棒回归的ANFIS训练
自适应神经模糊推理系统(ANFIS)是神经网络的自适应性和模糊推理系统的可解释性之间的一种有吸引力的折衷。通常,可以根据领域知识先验地确定某些变量的隶属函数。其他变量的隶属函数使用混合学习规则进行调整。混合学习规则是基于参数集的分解,学习是基于两个阶段的交错。在一个阶段,假设前提参数固定,使用最小二乘算法调整后续参数。在第二阶段,假设后续参数固定,采用梯度下降法调整前提参数。然而,用于调整后续参数的最小二乘算法容易受到异常值的影响,并且经常导致前提参数(隶属函数)意义不大。我们使用有噪声的数据集研究了这种影响,并提出了一种基于鲁棒回归的混合学习算法来训练ANFIS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信