MovCloud: A Cloud-Enabled Framework to Analyse Movement Behaviors

Shreya Ghosh, S. Ghosh, R. Buyya
{"title":"MovCloud: A Cloud-Enabled Framework to Analyse Movement Behaviors","authors":"Shreya Ghosh, S. Ghosh, R. Buyya","doi":"10.1109/CloudCom.2019.00043","DOIUrl":null,"url":null,"abstract":"Understanding human interests and intents from movement data are fundamental challenges for any location-based service. With the pervasiveness of sensor embedded smartphones and wireless networks and communication, the availability of spatio-temporal mobility trace (timestamped location information) is increasingly growing. Analysing these huge amount of mobility data is another major concern. This paper proposes a cloud-based framework named MovCloud to efficiently manage and analyse mobility data. Specifically, the framework presents a hierarchical indexing schema to store trajectory data in different spatio-temporal resolution, clusters the trajectories based on semantic movement behaviour instead of only raw latitude, longitude point and resolves mobility queries using MapReduce paradigm. MovCloud is implemented over Google Cloud Platform (GCP) and an extensive set of experiments on real-life data yield the effectiveness of the proposed framework. MovCloud has achieved ~ 28% better clustering accuracy and also executed three times faster than the baseline methods.","PeriodicalId":181972,"journal":{"name":"2019 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2019.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Understanding human interests and intents from movement data are fundamental challenges for any location-based service. With the pervasiveness of sensor embedded smartphones and wireless networks and communication, the availability of spatio-temporal mobility trace (timestamped location information) is increasingly growing. Analysing these huge amount of mobility data is another major concern. This paper proposes a cloud-based framework named MovCloud to efficiently manage and analyse mobility data. Specifically, the framework presents a hierarchical indexing schema to store trajectory data in different spatio-temporal resolution, clusters the trajectories based on semantic movement behaviour instead of only raw latitude, longitude point and resolves mobility queries using MapReduce paradigm. MovCloud is implemented over Google Cloud Platform (GCP) and an extensive set of experiments on real-life data yield the effectiveness of the proposed framework. MovCloud has achieved ~ 28% better clustering accuracy and also executed three times faster than the baseline methods.
MovCloud:一个云支持的框架来分析运动行为
从移动数据中理解人类的兴趣和意图是任何基于位置的服务的基本挑战。随着嵌入式传感器智能手机、无线网络和通信的普及,时空移动跟踪(时间戳位置信息)的可用性日益增加。分析这些庞大的移动数据是另一个主要问题。本文提出了一种基于云的移动数据管理和分析框架——移动云。具体而言,该框架提出了一种分层索引模式来存储不同时空分辨率的轨迹数据,基于语义运动行为对轨迹进行聚类,而不仅仅是原始的纬度、经度点,并使用MapReduce范式解决移动查询。MovCloud是在谷歌云平台(GCP)上实现的,在现实生活数据上进行的大量实验证明了所提出框架的有效性。MovCloud的聚类精度提高了28%,执行速度也比基线方法快了三倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信