Timeloop: A Systematic Approach to DNN Accelerator Evaluation

A. Parashar, Priyanka Raina, Y. Shao, Yu-hsin Chen, Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany, S. Keckler, J. Emer
{"title":"Timeloop: A Systematic Approach to DNN Accelerator Evaluation","authors":"A. Parashar, Priyanka Raina, Y. Shao, Yu-hsin Chen, Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany, S. Keckler, J. Emer","doi":"10.1109/ISPASS.2019.00042","DOIUrl":null,"url":null,"abstract":"This paper presents Timeloop, an infrastructure for evaluating and exploring the architecture design space of deep neural network (DNN) accelerators. Timeloop uses a concise and unified representation of the key architecture and implementation attributes of DNN accelerators to describe a broad space of hardware topologies. It can then emulate those topologies to generate an accurate projection of performance and energy efficiency for a DNN workload through a mapper that finds the best way to schedule operations and stage data on the specified architecture. This enables fair comparisons across different architectures and makes DNN accelerator design more systematic. This paper describes Timeloop's underlying models and algorithms in detail and shows results from case studies enabled by Timeloop, which provide interesting insights into the current state of DNN architecture design. In particular, they reveal that dataflow and memory hierarchy co-design plays a critical role in optimizing energy efficiency. Also, there is currently still not a single architecture that achieves the best performance and energy efficiency across a diverse set of workloads due to flexibility and efficiency trade-offs. These results provide inspiration into possible directions for DNN accelerator research.","PeriodicalId":137786,"journal":{"name":"2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"316","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2019.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 316

Abstract

This paper presents Timeloop, an infrastructure for evaluating and exploring the architecture design space of deep neural network (DNN) accelerators. Timeloop uses a concise and unified representation of the key architecture and implementation attributes of DNN accelerators to describe a broad space of hardware topologies. It can then emulate those topologies to generate an accurate projection of performance and energy efficiency for a DNN workload through a mapper that finds the best way to schedule operations and stage data on the specified architecture. This enables fair comparisons across different architectures and makes DNN accelerator design more systematic. This paper describes Timeloop's underlying models and algorithms in detail and shows results from case studies enabled by Timeloop, which provide interesting insights into the current state of DNN architecture design. In particular, they reveal that dataflow and memory hierarchy co-design plays a critical role in optimizing energy efficiency. Also, there is currently still not a single architecture that achieves the best performance and energy efficiency across a diverse set of workloads due to flexibility and efficiency trade-offs. These results provide inspiration into possible directions for DNN accelerator research.
时间循环:深度神经网络加速器评估的系统方法
本文提出了一种用于评估和探索深度神经网络(DNN)加速器的架构设计空间的基础架构timelloop。timelloop使用DNN加速器的关键架构和实现属性的简洁统一的表示来描述广泛的硬件拓扑空间。然后,它可以模拟这些拓扑,通过映射器为DNN工作负载生成准确的性能和能源效率投影,映射器可以找到在指定架构上调度操作和阶段数据的最佳方法。这使不同架构之间的公平比较成为可能,并使深度神经网络加速器的设计更加系统化。本文详细描述了timelloop的底层模型和算法,并展示了timelloop支持的案例研究的结果,这些结果为DNN架构设计的当前状态提供了有趣的见解。特别是,数据流和内存层次协同设计在优化能效方面起着至关重要的作用。此外,由于灵活性和效率的权衡,目前还没有一种架构能够在不同的工作负载集上实现最佳性能和能源效率。这些结果为DNN加速器的研究提供了可能的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信