Efficient planar graph cuts with applications in Computer Vision

Frank R. Schmidt, Eno Töppe, D. Cremers
{"title":"Efficient planar graph cuts with applications in Computer Vision","authors":"Frank R. Schmidt, Eno Töppe, D. Cremers","doi":"10.1109/CVPR.2009.5206863","DOIUrl":null,"url":null,"abstract":"We present a fast graph cut algorithm for planar graphs. It is based on the graph theoretical work and leads to an efficient method that we apply on shape matching and image segmentation. In contrast to currently used methods in computer vision, the presented approach provides an upper bound for its runtime behavior that is almost linear. In particular, we are able to match two different planar shapes of N points in O(N2 log N) and segment a given image of N pixels in O(N log N). We present two experimental benchmark studies which demonstrate that the presented method is also in practice faster than previously proposed graph cut methods: On planar shape matching and image segmentation we observe a speed-up of an order of magnitude, depending on resolution.","PeriodicalId":386532,"journal":{"name":"2009 IEEE Conference on Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2009.5206863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

We present a fast graph cut algorithm for planar graphs. It is based on the graph theoretical work and leads to an efficient method that we apply on shape matching and image segmentation. In contrast to currently used methods in computer vision, the presented approach provides an upper bound for its runtime behavior that is almost linear. In particular, we are able to match two different planar shapes of N points in O(N2 log N) and segment a given image of N pixels in O(N log N). We present two experimental benchmark studies which demonstrate that the presented method is also in practice faster than previously proposed graph cut methods: On planar shape matching and image segmentation we observe a speed-up of an order of magnitude, depending on resolution.
高效平面图形切割及其在计算机视觉中的应用
提出了一种用于平面图形的快速图切算法。它是在图理论工作的基础上提出的一种有效的形状匹配和图像分割方法。与目前使用的计算机视觉方法相比,该方法为其运行时行为提供了一个几乎线性的上界。特别是,我们能够在O(N2 log N)内匹配N个点的两个不同平面形状,并在O(N log N)内分割给定图像的N个像素。我们提出了两个实验基准研究,表明所提出的方法在实践中也比以前提出的图切方法更快:在平面形状匹配和图像分割上,我们观察到速度提高了一个数量级,这取决于分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信