Mathematical Modeling of Non-Selective Channels: Estimating Ion Current Fractions and Their Impact on Pathological Simulations

E. M. Wülfers, P. Kohl, G. Seemann
{"title":"Mathematical Modeling of Non-Selective Channels: Estimating Ion Current Fractions and Their Impact on Pathological Simulations","authors":"E. M. Wülfers, P. Kohl, G. Seemann","doi":"10.22489/CinC.2018.329","DOIUrl":null,"url":null,"abstract":"Currents through non-selective ion channels are often mathematically modeled as an Ohmic current. In such models, quantifying the contributions of different contributing ion species is not easily possible. We present a method to adapt Ohmic descriptions using the Goldman-Hodgkin-Katz equation in order to describe every ion species' contribution to the total channel current. We use our method to adapt a model of Channelrhodopsin-2, a light-gated cation non-selective channel, and test our adaption in single cell and 1-dimensional tissue strand simulations of ventricular tachycardia. Resulting contribution ratios of sodium, potassium and proton currents match expectations and correlate well with previously published data. Simulations of optical defibrillation for ventricular tachycardia show that our model predicts a detrimental outcome in ischaemia-like pathological settings that are missed by the original (Ohmic) model.","PeriodicalId":215521,"journal":{"name":"2018 Computing in Cardiology Conference (CinC)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2018.329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currents through non-selective ion channels are often mathematically modeled as an Ohmic current. In such models, quantifying the contributions of different contributing ion species is not easily possible. We present a method to adapt Ohmic descriptions using the Goldman-Hodgkin-Katz equation in order to describe every ion species' contribution to the total channel current. We use our method to adapt a model of Channelrhodopsin-2, a light-gated cation non-selective channel, and test our adaption in single cell and 1-dimensional tissue strand simulations of ventricular tachycardia. Resulting contribution ratios of sodium, potassium and proton currents match expectations and correlate well with previously published data. Simulations of optical defibrillation for ventricular tachycardia show that our model predicts a detrimental outcome in ischaemia-like pathological settings that are missed by the original (Ohmic) model.
非选择性通道的数学建模:估计离子电流分数及其对病理模拟的影响
通过非选择性离子通道的电流通常用数学模型表示为欧姆电流。在这样的模型中,量化不同贡献离子种类的贡献是不容易的。我们提出了一种方法来适应欧姆描述使用戈德曼-霍奇金-卡茨方程,以描述每一种离子对总通道电流的贡献。我们使用我们的方法来适应channel rhodopsin-2(一种光门控阳离子非选择性通道)的模型,并在室性心动过速的单细胞和一维组织链模拟中测试我们的适应性。由此得出的钠、钾和质子电流的贡献比符合预期,并与先前发表的数据有很好的相关性。光学除颤对室性心动过速的模拟表明,我们的模型预测了原始(欧姆)模型所遗漏的缺血样病理环境的有害结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信