Xiaojun Shang, Yu Liu, Yingling Mao, Zhenhua Liu, Yuanyuan Yang
{"title":"Greening Reliability of Virtual Network Functions via Online Optimization","authors":"Xiaojun Shang, Yu Liu, Yingling Mao, Zhenhua Liu, Yuanyuan Yang","doi":"10.1109/IWQoS49365.2020.9212998","DOIUrl":null,"url":null,"abstract":"The fast development of virtual network functions (VNFs) brings new challenges to providing reliability. The widely adopted approach of deploying backups incurs financial costs and environmental impacts. On the other hand, the recent trend of incorporating renewable energy into computing systems provides great potentials, yet the volatility of renewable energy generation presents significant operational challenges. In this paper, we optimize availability of VNFs under a limited backup budget and renewable energy using a dynamic strategy GVB. GVB applies a novel online algorithm to solve the VNF reliability optimization problem with non-stationary energy generation and VNF failures. Both theoretical bound and extensive simulation results highlight that GVB provides higher reliability compared with existing baselines.","PeriodicalId":177899,"journal":{"name":"2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS49365.2020.9212998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The fast development of virtual network functions (VNFs) brings new challenges to providing reliability. The widely adopted approach of deploying backups incurs financial costs and environmental impacts. On the other hand, the recent trend of incorporating renewable energy into computing systems provides great potentials, yet the volatility of renewable energy generation presents significant operational challenges. In this paper, we optimize availability of VNFs under a limited backup budget and renewable energy using a dynamic strategy GVB. GVB applies a novel online algorithm to solve the VNF reliability optimization problem with non-stationary energy generation and VNF failures. Both theoretical bound and extensive simulation results highlight that GVB provides higher reliability compared with existing baselines.