Detection and Identification of Android Malware Based on Information Flow Monitoring

Radoniaina Andriatsimandefitra, Valérie Viet Triem Tong
{"title":"Detection and Identification of Android Malware Based on Information Flow Monitoring","authors":"Radoniaina Andriatsimandefitra, Valérie Viet Triem Tong","doi":"10.1109/CSCloud.2015.27","DOIUrl":null,"url":null,"abstract":"Information flow monitoring has been mostly used to detect privacy leaks. In a previous work, we showed that they can also be used to characterize Android malware behaviours and in the current one we show that these flows can also be used to detect and identify Android malware. The characterization consists in computing automatically System Flow Graphs that describe how a malware disseminates its data in the system. In the current work, we propose a method that uses these SFG-based malware profile to detect the execution of Android malware by monitoring the information flows they cause in the system. We evaluated our method by monitoring the execution of 39 malware samples and 70 non malicious applications. Our results show that our approach detected the execution of all the malware samples and did not raise any false alerts for the 70 non malicious applications.","PeriodicalId":278090,"journal":{"name":"2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCloud.2015.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Information flow monitoring has been mostly used to detect privacy leaks. In a previous work, we showed that they can also be used to characterize Android malware behaviours and in the current one we show that these flows can also be used to detect and identify Android malware. The characterization consists in computing automatically System Flow Graphs that describe how a malware disseminates its data in the system. In the current work, we propose a method that uses these SFG-based malware profile to detect the execution of Android malware by monitoring the information flows they cause in the system. We evaluated our method by monitoring the execution of 39 malware samples and 70 non malicious applications. Our results show that our approach detected the execution of all the malware samples and did not raise any false alerts for the 70 non malicious applications.
基于信息流监控的Android恶意软件检测与识别
信息流监控主要用于检测隐私泄露。在之前的工作中,我们展示了它们也可以用来表征Android恶意软件的行为,在当前的工作中,我们展示了这些流也可以用来检测和识别Android恶意软件。表征包括自动计算描述恶意软件如何在系统中传播其数据的系统流程图。在目前的工作中,我们提出了一种方法,使用这些基于sfg的恶意软件配置文件,通过监控它们在系统中引起的信息流来检测Android恶意软件的执行。我们通过监控39个恶意软件样本和70个非恶意应用程序的执行来评估我们的方法。我们的结果表明,我们的方法检测到所有恶意软件样本的执行,并且没有对70个非恶意应用程序提出任何错误警报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信