A. Kashyap, P.L. Ramavarapu, S. Lal, T. McNutt, A. Lostetter, T. Funaki, H. Mantooth
{"title":"Compact circuit simulation model of silicon carbide static induction and junction field effect transistors","authors":"A. Kashyap, P.L. Ramavarapu, S. Lal, T. McNutt, A. Lostetter, T. Funaki, H. Mantooth","doi":"10.1109/CIPE.2004.1428116","DOIUrl":null,"url":null,"abstract":"The electrical characterization and model development for silicon carbide (SiC) vertical channel SIT and JFET structures are presented in this work. A compact model is developed based on the device geometry and SiC material properties. The model is validated against measured data at 25/spl deg/C and 100/spl deg/C for a prototype 0.03 cm/sup 2/ SiC SIT provided by Northrop Grumman. Validation is also done against the power JFET present in the combined MOSFET-SiC JFET cascode structure from SiCED. The model's on-state and transient characteristics are validated over this temperature range. Validation of the model shows excellent agreement with measured data. The physics-based approach implemented in this model is crucial to describing the transient behavior over a wide range of application conditions and temperature ranges.","PeriodicalId":137483,"journal":{"name":"2004 IEEE Workshop on Computers in Power Electronics, 2004. Proceedings.","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE Workshop on Computers in Power Electronics, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIPE.2004.1428116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
The electrical characterization and model development for silicon carbide (SiC) vertical channel SIT and JFET structures are presented in this work. A compact model is developed based on the device geometry and SiC material properties. The model is validated against measured data at 25/spl deg/C and 100/spl deg/C for a prototype 0.03 cm/sup 2/ SiC SIT provided by Northrop Grumman. Validation is also done against the power JFET present in the combined MOSFET-SiC JFET cascode structure from SiCED. The model's on-state and transient characteristics are validated over this temperature range. Validation of the model shows excellent agreement with measured data. The physics-based approach implemented in this model is crucial to describing the transient behavior over a wide range of application conditions and temperature ranges.