{"title":"A data-driven reflectance model","authors":"W. Matusik","doi":"10.1145/1201775.882343","DOIUrl":null,"url":null,"abstract":"We present a generative model for isotropic bidirectional reflectance distribution functions (BRDFs) based on acquired reflectance data. Instead of using analytical reflectance models, we represent each BRDF as a dense set of measurements. This allows us to interpolate and extrapolate in the space of acquired BRDFs to create new BRDFs. We treat each acquired BRDF as a single high-dimensional vector taken from a space of all possible BRDFs. We apply both linear (subspace) and non-linear (manifold) dimensionality reduction tools in an effort to discover a lower-dimensional representation that characterizes our measurements. We let users define perceptually meaningful parametrization directions to navigate in the reduced-dimension BRDF space. On the low-dimensional manifold, movement along these directions produces novel but valid BRDFs.","PeriodicalId":314969,"journal":{"name":"ACM SIGGRAPH 2003 Papers","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"908","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2003 Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1201775.882343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 908
Abstract
We present a generative model for isotropic bidirectional reflectance distribution functions (BRDFs) based on acquired reflectance data. Instead of using analytical reflectance models, we represent each BRDF as a dense set of measurements. This allows us to interpolate and extrapolate in the space of acquired BRDFs to create new BRDFs. We treat each acquired BRDF as a single high-dimensional vector taken from a space of all possible BRDFs. We apply both linear (subspace) and non-linear (manifold) dimensionality reduction tools in an effort to discover a lower-dimensional representation that characterizes our measurements. We let users define perceptually meaningful parametrization directions to navigate in the reduced-dimension BRDF space. On the low-dimensional manifold, movement along these directions produces novel but valid BRDFs.