A 2-D parallel convex hull algorithm with optimal communication phases

Jieliang Zhou, Xiaotie Deng, Patrick W. Dymond
{"title":"A 2-D parallel convex hull algorithm with optimal communication phases","authors":"Jieliang Zhou, Xiaotie Deng, Patrick W. Dymond","doi":"10.1109/IPPS.1997.580962","DOIUrl":null,"url":null,"abstract":"We investigate the problem of finding the two-dimensional convex hull of a set of points on a coarse-grained parallel computer. Recently Goodrich has devised a parallel sorting algorithm for n items on P processors which achieves an optimal number of communication phases for all ranges of P/spl les/n. Ferreira et al. have recently introduced a deterministic convex hull algorithm with a constant number of communication phases for n and P satisfying n/spl ges/P/sup 1+/spl epsiv//. Here we obtain a new parallel 2-D convex hull algorithm with an optimal bound on number of communication phases for all values of P/spl les/n while maintaining optimal local computation time.","PeriodicalId":145892,"journal":{"name":"Proceedings 11th International Parallel Processing Symposium","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1997.580962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We investigate the problem of finding the two-dimensional convex hull of a set of points on a coarse-grained parallel computer. Recently Goodrich has devised a parallel sorting algorithm for n items on P processors which achieves an optimal number of communication phases for all ranges of P/spl les/n. Ferreira et al. have recently introduced a deterministic convex hull algorithm with a constant number of communication phases for n and P satisfying n/spl ges/P/sup 1+/spl epsiv//. Here we obtain a new parallel 2-D convex hull algorithm with an optimal bound on number of communication phases for all values of P/spl les/n while maintaining optimal local computation time.
一种具有最优通信相位的二维并行凸包算法
我们研究了在粗粒度并行计算机上寻找一组点的二维凸包的问题。最近,Goodrich设计了一种在P个处理器上对n个项目进行并行排序的算法,该算法在P/spl les/n的所有范围内实现了最优的通信相位数。Ferreira等人最近引入了一种确定性凸包算法,该算法具有n和P的恒定通信相位数,满足n/spl ges/P/sup 1+/spl epsiv//。本文给出了一种新的并行二维凸包算法,该算法在保持最优局部计算时间的同时,对P/spl les/n的所有值具有最优通信相位数界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信