Semantic Enhancement Loss Function Based on Attention Mechanism

Teng Shuhua, Zheng Lidong, Cheng Zhengting, Yuan Zhian, Ma Yanxin
{"title":"Semantic Enhancement Loss Function Based on Attention Mechanism","authors":"Teng Shuhua, Zheng Lidong, Cheng Zhengting, Yuan Zhian, Ma Yanxin","doi":"10.1109/ICCWAMTIP56608.2022.10016540","DOIUrl":null,"url":null,"abstract":"Panoramic segmentation is an important research direction in computer vision. Considering that different applications have different requirements for semantic segmentation accuracy, a semantic enhancement loss function based on attention mechanism is proposed. By adding attention mechanism, it can enhance the sensitivity to the semantic information of task attention and improve the classification accuracy of specific objects and backgrounds. The experimental results show that the semantic enhancement loss function can effectively improve the classification accuracy of semantic categories required by tasks.","PeriodicalId":159508,"journal":{"name":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Panoramic segmentation is an important research direction in computer vision. Considering that different applications have different requirements for semantic segmentation accuracy, a semantic enhancement loss function based on attention mechanism is proposed. By adding attention mechanism, it can enhance the sensitivity to the semantic information of task attention and improve the classification accuracy of specific objects and backgrounds. The experimental results show that the semantic enhancement loss function can effectively improve the classification accuracy of semantic categories required by tasks.
基于注意机制的语义增强损失函数
全景分割是计算机视觉中的一个重要研究方向。针对不同应用对语义切分精度的要求不同,提出了一种基于注意机制的语义增强损失函数。通过添加注意机制,可以增强对任务注意语义信息的敏感性,提高对特定对象和背景的分类准确率。实验结果表明,语义增强损失函数可以有效地提高任务所需语义类别的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信