Christopher I. Rodrigues, T. Jablin, Abdul Dakkak, Wen-mei W. Hwu
{"title":"Triolet: a programming system that unifies algorithmic skeleton interfaces for high-performance cluster computing","authors":"Christopher I. Rodrigues, T. Jablin, Abdul Dakkak, Wen-mei W. Hwu","doi":"10.1145/2555243.2555268","DOIUrl":null,"url":null,"abstract":"Functional algorithmic skeletons promise a high-level programming interface for distributed-memory clusters that free developers from concerns of task decomposition, scheduling, and communication. Unfortunately, prior distributed functional skeleton frameworks do not deliver performance comparable to that achievable in a low-level distributed programming model such as C with MPI and OpenMP, even when used in concert with high-performance array libraries. There are several causes: they do not take advantage of shared memory on each cluster node; they impose a fixed partitioning strategy on input data; and they have limited ability to fuse loops involving skeletons that produce a variable number of outputs per input.\n We address these shortcomings in the Triolet programming language through a modular library design that separates concerns of parallelism, loop nesting, and data partitioning. We show how Triolet substantially improves the parallel performance of algorithms involving array traversals and nested, variable-size loops over what is achievable in Eden, a distributed variant of Haskell. We further demonstrate how Triolet can substantially simplify parallel programming relative to C with MPI and OpenMP while achieving 23--100% of its performance on a 128-core cluster.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2555243.2555268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Functional algorithmic skeletons promise a high-level programming interface for distributed-memory clusters that free developers from concerns of task decomposition, scheduling, and communication. Unfortunately, prior distributed functional skeleton frameworks do not deliver performance comparable to that achievable in a low-level distributed programming model such as C with MPI and OpenMP, even when used in concert with high-performance array libraries. There are several causes: they do not take advantage of shared memory on each cluster node; they impose a fixed partitioning strategy on input data; and they have limited ability to fuse loops involving skeletons that produce a variable number of outputs per input.
We address these shortcomings in the Triolet programming language through a modular library design that separates concerns of parallelism, loop nesting, and data partitioning. We show how Triolet substantially improves the parallel performance of algorithms involving array traversals and nested, variable-size loops over what is achievable in Eden, a distributed variant of Haskell. We further demonstrate how Triolet can substantially simplify parallel programming relative to C with MPI and OpenMP while achieving 23--100% of its performance on a 128-core cluster.