Relevance of Dirichlet process mixtures for modeling interferences in underlay cognitive radio

V. Pereira, G. Ferré, A. Giremus, É. Grivel
{"title":"Relevance of Dirichlet process mixtures for modeling interferences in underlay cognitive radio","authors":"V. Pereira, G. Ferré, A. Giremus, É. Grivel","doi":"10.5281/ZENODO.44128","DOIUrl":null,"url":null,"abstract":"In the field of underlay cognitive radio communications, the signal transmitted by the secondary user is disturbed by incoming signals from primary users. Thus, it is necessary to compensate for this secondary-link degradation at the receiver level. In this paper we use Dirichlet process mixtures (DPM) to relax a priori assumptions on the characteristics of the primary user-induced interference. DPM allow us to model the probability density function of the interference. The latter is estimated jointly with the symbols and the channel of the secondary link by using marginalized particle filtering. Our approach makes it possible to improve the symbol error rate compared with an algorithm that simply models the interference as a Gaussian noise.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the field of underlay cognitive radio communications, the signal transmitted by the secondary user is disturbed by incoming signals from primary users. Thus, it is necessary to compensate for this secondary-link degradation at the receiver level. In this paper we use Dirichlet process mixtures (DPM) to relax a priori assumptions on the characteristics of the primary user-induced interference. DPM allow us to model the probability density function of the interference. The latter is estimated jointly with the symbols and the channel of the secondary link by using marginalized particle filtering. Our approach makes it possible to improve the symbol error rate compared with an algorithm that simply models the interference as a Gaussian noise.
狄利克雷过程混合物与底层认知无线电建模干扰的相关性
在底层认知无线电通信领域中,次要用户发送的信号会受到主要用户输入信号的干扰。因此,有必要在接收端级别补偿这种次级链路的退化。本文利用狄利克雷过程混合(DPM)放宽了对原始用户诱导干扰特性的先验假设。DPM允许我们对干扰的概率密度函数进行建模。利用边缘粒子滤波的方法,结合二次链路的符号和信道进行估计。与简单地将干扰建模为高斯噪声的算法相比,我们的方法可以提高符号错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信