A Decentralized Collaborative Approach to Online Edge User Allocation in Edge Computing Environments

Qinglan Peng, Yunni Xia, Yan Wang, Chunrong Wu, Wanbo Zheng, Xin Luo, Shanchen Pang, Yong Ma, Chunxu Jiang
{"title":"A Decentralized Collaborative Approach to Online Edge User Allocation in Edge Computing Environments","authors":"Qinglan Peng, Yunni Xia, Yan Wang, Chunrong Wu, Wanbo Zheng, Xin Luo, Shanchen Pang, Yong Ma, Chunxu Jiang","doi":"10.1109/ICWS49710.2020.00045","DOIUrl":null,"url":null,"abstract":"Edge computing is a promising paradigm that can boost the performance of novel mobile applications and energize the real-time governance of Internet-of-Things (IoT) big data. In edge computing, mobile application vendors are allowed to employ edge resources to speed up end-users' applications in an elastic and on-demand manner. However, due to the complex geographical distribution of edge servers and users, how to decide the most appropriate destination edge server to hire and how to decide the corresponding user-server allocation plan with as-low-as-possible monetary cost are the key problems for application vendors. Instead of assuming a simultaneous-batch-arrival pattern of incoming users and considering static optimization of the Edge User Allocation (EUA) problem by most existing studies, in this paper, we consider an online EUA problem where users' arrival and departure follow a general pattern. We take the long-term edge user allocation rate and edge server leasing cost as scheduling targets and propose a decentralized collaborative and fuzzy-control-based approach to yielding real-time user-edge-server allocation schedules. In this approach, edge users are allowed to independently make their own allocation decision only based on local information (i.e., the status of nearby edge servers). Experiments on real-world edge datasets demonstrate our approach outperforms state-of-the-art approaches in terms of long-term allocation rate and system cost.","PeriodicalId":338833,"journal":{"name":"2020 IEEE International Conference on Web Services (ICWS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Web Services (ICWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS49710.2020.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Edge computing is a promising paradigm that can boost the performance of novel mobile applications and energize the real-time governance of Internet-of-Things (IoT) big data. In edge computing, mobile application vendors are allowed to employ edge resources to speed up end-users' applications in an elastic and on-demand manner. However, due to the complex geographical distribution of edge servers and users, how to decide the most appropriate destination edge server to hire and how to decide the corresponding user-server allocation plan with as-low-as-possible monetary cost are the key problems for application vendors. Instead of assuming a simultaneous-batch-arrival pattern of incoming users and considering static optimization of the Edge User Allocation (EUA) problem by most existing studies, in this paper, we consider an online EUA problem where users' arrival and departure follow a general pattern. We take the long-term edge user allocation rate and edge server leasing cost as scheduling targets and propose a decentralized collaborative and fuzzy-control-based approach to yielding real-time user-edge-server allocation schedules. In this approach, edge users are allowed to independently make their own allocation decision only based on local information (i.e., the status of nearby edge servers). Experiments on real-world edge datasets demonstrate our approach outperforms state-of-the-art approaches in terms of long-term allocation rate and system cost.
边缘计算环境中在线边缘用户分配的分散协作方法
边缘计算是一种前景广阔的模式,它可以提高新型移动应用的性能,并为实时治理物联网(IoT)大数据提供动力。在边缘计算中,移动应用厂商可以利用边缘资源,以弹性和按需的方式加速终端用户的应用。然而,由于边缘服务器和用户的地理分布十分复杂,如何决定租用最合适的目标边缘服务器,以及如何以尽可能低的货币成本决定相应的用户服务器分配方案,是应用厂商面临的关键问题。在本文中,我们不考虑现有研究中假设的用户同时批量到达模式,也不考虑静态优化边缘用户分配(EUA)问题,而是考虑用户到达和离开遵循一般模式的在线 EUA 问题。我们将长期边缘用户分配率和边缘服务器租用成本作为调度目标,并提出了一种基于分散协作和模糊控制的方法来生成实时的用户-边缘-服务器分配调度。在这种方法中,允许边缘用户仅根据本地信息(即附近边缘服务器的状态)独立做出自己的分配决策。在真实世界边缘数据集上的实验表明,我们的方法在长期分配率和系统成本方面优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信