Levi Decomposition of Frobenius Lie Algebra of Dimension 6

Henti Henti, E. Kurniadi, E. Carnia
{"title":"Levi Decomposition of Frobenius Lie Algebra of Dimension 6","authors":"Henti Henti, E. Kurniadi, E. Carnia","doi":"10.18860/ca.v7i3.15656","DOIUrl":null,"url":null,"abstract":"In this paper, we study notion of the Lie algebra  of dimension 6. The finite dimensional Lie algebra can be expressed in terms of decomposition between Levi subalgebra and the maximal solvable ideal. This form of decomposition is called Levi decomposition. The work aims to obtain Levi decomposition of Frobenius Lie algebra of dimension 6. To achieve this aim, we compute Levi subalgebra and the maximal solvable ideal (radical) of  with respect to its basis. To obtain Levi subalgebra and the maximal solvable ideal, we apply literature reviews about Lie algebra and decomposition Levi in Dagli result. For future research, decomposition Levi for higher dimension of Frobenius Lie algebra  is still an open problem.","PeriodicalId":388519,"journal":{"name":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/ca.v7i3.15656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study notion of the Lie algebra  of dimension 6. The finite dimensional Lie algebra can be expressed in terms of decomposition between Levi subalgebra and the maximal solvable ideal. This form of decomposition is called Levi decomposition. The work aims to obtain Levi decomposition of Frobenius Lie algebra of dimension 6. To achieve this aim, we compute Levi subalgebra and the maximal solvable ideal (radical) of  with respect to its basis. To obtain Levi subalgebra and the maximal solvable ideal, we apply literature reviews about Lie algebra and decomposition Levi in Dagli result. For future research, decomposition Levi for higher dimension of Frobenius Lie algebra  is still an open problem.
6维Frobenius李代数的Levi分解
本文研究了6维李代数的概念。有限维李代数可以用李维子代数与极大可解理想之间的分解来表示。这种形式的分解叫做李维分解。本文的目的是得到6维Frobenius李代数的Levi分解。为了达到这个目的,我们计算了Levi子代数及其基的最大可解理想(根)。为了得到李维子代数和极大可解理想,我们应用了李维代数和分解李维在Dagli结果中的文献综述。对于今后的研究,Frobenius李代数的高维Levi分解仍然是一个开放的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信