Inverse double Roman domination in graphs

Wilma Laveena D' Souza, V. Chaitra, M. Kumara
{"title":"Inverse double Roman domination in graphs","authors":"Wilma Laveena D' Souza, V. Chaitra, M. Kumara","doi":"10.1142/s1793830922501440","DOIUrl":null,"url":null,"abstract":"For a graph [Formula: see text], a double Roman dominating function (DRDF) is a function [Formula: see text] such that each vertex [Formula: see text] with [Formula: see text] is adjacent to at least two vertices labeled [Formula: see text] or one vertex labeled [Formula: see text] and each vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text]. The weight of [Formula: see text] is the sum of all labelings [Formula: see text] and is denoted by [Formula: see text]. If [Formula: see text] is a DRDF on [Formula: see text] with minimum weight [Formula: see text], then its inverse double Roman dominating function (IDRDF) [Formula: see text] is a DRDF on [Formula: see text], such that [Formula: see text], where [Formula: see text]. The inverse double Roman domination number (IDRDN) of [Formula: see text], denoted by [Formula: see text] is the minimum weight of such a function. We introduce this new type of inverse dominating function, obtain some bounds for the IDRDN of [Formula: see text]. We characterize the graphs having [Formula: see text] and the highest. We also present an approach for constructing graphs with the desired IDRDN.","PeriodicalId":342835,"journal":{"name":"Discret. Math. Algorithms Appl.","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Algorithms Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830922501440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph [Formula: see text], a double Roman dominating function (DRDF) is a function [Formula: see text] such that each vertex [Formula: see text] with [Formula: see text] is adjacent to at least two vertices labeled [Formula: see text] or one vertex labeled [Formula: see text] and each vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text]. The weight of [Formula: see text] is the sum of all labelings [Formula: see text] and is denoted by [Formula: see text]. If [Formula: see text] is a DRDF on [Formula: see text] with minimum weight [Formula: see text], then its inverse double Roman dominating function (IDRDF) [Formula: see text] is a DRDF on [Formula: see text], such that [Formula: see text], where [Formula: see text]. The inverse double Roman domination number (IDRDN) of [Formula: see text], denoted by [Formula: see text] is the minimum weight of such a function. We introduce this new type of inverse dominating function, obtain some bounds for the IDRDN of [Formula: see text]. We characterize the graphs having [Formula: see text] and the highest. We also present an approach for constructing graphs with the desired IDRDN.
反双罗马统治图
对于一个图[公式:见文],双罗马支配函数(DRDF)是这样一个函数[公式:见文],使得每个顶点[公式:见文]与至少两个标记为[公式:见文]的顶点[公式:见文]或一个标记为[公式:见文]的顶点[公式:见文]相邻,并且每个顶点[公式:见文]与[公式:见文]至少相邻一个顶点[公式:见文]。[公式:见文]的权重是所有标签[公式:见文]的和,用[公式:见文]表示。如果[Formula: see text]是[Formula: see text]上具有最小权值的DRDF [Formula: see text],那么它的逆双罗马支配函数(IDRDF) [Formula: see text]是[Formula: see text]上的DRDF,使得[Formula: see text],其中[Formula: see text]。[Formula: see text]的逆双罗马支配数(IDRDN),用[Formula: see text]表示为该函数的最小权值。我们引入了这类新的逆控制函数,得到了[公式:见文]的IDRDN的一些界。我们用[公式:见文本]和最高来描述图形。我们还提出了一种用期望的IDRDN构造图的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信