T. Roska, G. Bártfai, P. Szolgay, T. Szirányi, A. Radványi, T. Kozek, Z. Ugray
{"title":"A hardware accelerator board for cellular neural networks: CNN-HAC","authors":"T. Roska, G. Bártfai, P. Szolgay, T. Szirányi, A. Radványi, T. Kozek, Z. Ugray","doi":"10.1109/CNNA.1990.207520","DOIUrl":null,"url":null,"abstract":"The hardware accelerator (HAC) boards using catalog programmable VLSI ICs represent a trade-off having higher reconfigurability and lower cost. This paper presents such a solution for a cellular neural network (CNN). The architecture of the present design (CNN-HAC) using 4 standard DSPs to calculate the transient response of a one-layer CNN containing 0.25-1.0 million analog neural cells is presented. The architecture and also the design principles are independent of the number of processors. The actual design was made in the form of a PC add-on board. The global control unit, which connects the board to the host firmware and communicates control signals to/from the local control units of the DSPs, was realized mainly with EPLDs. A special correspondence between the virtual processing elements-calculating the time discrete models of the analog neural cells-and the physical ones, established to work an architecture with an infrequent, one-directional interprocessor communication, is discussed in detail.<<ETX>>","PeriodicalId":142909,"journal":{"name":"IEEE International Workshop on Cellular Neural Networks and their Applications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Cellular Neural Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1990.207520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
The hardware accelerator (HAC) boards using catalog programmable VLSI ICs represent a trade-off having higher reconfigurability and lower cost. This paper presents such a solution for a cellular neural network (CNN). The architecture of the present design (CNN-HAC) using 4 standard DSPs to calculate the transient response of a one-layer CNN containing 0.25-1.0 million analog neural cells is presented. The architecture and also the design principles are independent of the number of processors. The actual design was made in the form of a PC add-on board. The global control unit, which connects the board to the host firmware and communicates control signals to/from the local control units of the DSPs, was realized mainly with EPLDs. A special correspondence between the virtual processing elements-calculating the time discrete models of the analog neural cells-and the physical ones, established to work an architecture with an infrequent, one-directional interprocessor communication, is discussed in detail.<>