Query-Biased Summaries for Tabular Data

Vincent Au, Paul Thomas, Gaya K. Jayasinghe
{"title":"Query-Biased Summaries for Tabular Data","authors":"Vincent Au, Paul Thomas, Gaya K. Jayasinghe","doi":"10.1145/3015022.3015027","DOIUrl":null,"url":null,"abstract":"Government, research, and academic data portals publish a large amount of public data, but present tools make discovery difficult. In particular, search results do not support a user's decision whether or not to commit to a download of what might be a large data set. We describe a method for producing query-biased summaries of tabular data, which aims to support a user's download decision-or even to answer the question on the spot, with no further interaction. The method infers simple types in the data and query; automatically refines queries, where that makes sense; extracts relevant subsets of the complete table; and generates both graphical and tabular summaries of what remains. A small-scale user study suggests this both helps users identify useful results (fewer false negatives), and reduces wasted downloads (fewer false positives).","PeriodicalId":334601,"journal":{"name":"Proceedings of the 21st Australasian Document Computing Symposium","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st Australasian Document Computing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3015022.3015027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Government, research, and academic data portals publish a large amount of public data, but present tools make discovery difficult. In particular, search results do not support a user's decision whether or not to commit to a download of what might be a large data set. We describe a method for producing query-biased summaries of tabular data, which aims to support a user's download decision-or even to answer the question on the spot, with no further interaction. The method infers simple types in the data and query; automatically refines queries, where that makes sense; extracts relevant subsets of the complete table; and generates both graphical and tabular summaries of what remains. A small-scale user study suggests this both helps users identify useful results (fewer false negatives), and reduces wasted downloads (fewer false positives).
表格数据的查询偏置摘要
政府、研究和学术数据门户发布了大量的公共数据,但现有的工具使发现变得困难。特别是,搜索结果不支持用户决定是否下载可能很大的数据集。我们描述了一种生成表格数据的有查询偏差摘要的方法,其目的是支持用户的下载决策,甚至是在没有进一步交互的情况下当场回答问题。该方法推断数据和查询中的简单类型;自动优化查询,这是有意义的;提取完整表的相关子集;并生成剩余内容的图形和表格摘要。一项小规模的用户研究表明,这既可以帮助用户识别有用的结果(减少误报),又可以减少浪费的下载(减少误报)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信