Using Author Embeddings to Improve Tweet Stance Classification

NUT@EMNLP Pub Date : 2018-11-01 DOI:10.18653/v1/W18-6124
Adrian Benton, Mark Dredze
{"title":"Using Author Embeddings to Improve Tweet Stance Classification","authors":"Adrian Benton, Mark Dredze","doi":"10.18653/v1/W18-6124","DOIUrl":null,"url":null,"abstract":"Many social media classification tasks analyze the content of a message, but do not consider the context of the message. For example, in tweet stance classification – where a tweet is categorized according to a viewpoint it espouses – the expressed viewpoint depends on latent beliefs held by the user. In this paper we investigate whether incorporating knowledge about the author can improve tweet stance classification. Furthermore, since author information and embeddings are often unavailable for labeled training examples, we propose a semi-supervised pretraining method to predict user embeddings. Although the neural stance classifiers we learn are often outperformed by a baseline SVM, author embedding pre-training yields improvements over a non-pre-trained neural network on four out of five domains in the SemEval 2016 6A tweet stance classification task. In a tweet gun control stance classification dataset, improvements from pre-training are only apparent when training data is limited.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-6124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Many social media classification tasks analyze the content of a message, but do not consider the context of the message. For example, in tweet stance classification – where a tweet is categorized according to a viewpoint it espouses – the expressed viewpoint depends on latent beliefs held by the user. In this paper we investigate whether incorporating knowledge about the author can improve tweet stance classification. Furthermore, since author information and embeddings are often unavailable for labeled training examples, we propose a semi-supervised pretraining method to predict user embeddings. Although the neural stance classifiers we learn are often outperformed by a baseline SVM, author embedding pre-training yields improvements over a non-pre-trained neural network on four out of five domains in the SemEval 2016 6A tweet stance classification task. In a tweet gun control stance classification dataset, improvements from pre-training are only apparent when training data is limited.
使用作者嵌入改进推文姿态分类
许多社交媒体分类任务分析消息的内容,但不考虑消息的上下文。例如,在推文立场分类中——推文根据它所支持的观点进行分类——所表达的观点取决于用户持有的潜在信念。在本文中,我们研究了结合作者的知识是否可以提高推文的姿态分类。此外,由于作者信息和嵌入通常无法用于标记训练样例,我们提出了一种半监督预训练方法来预测用户嵌入。尽管我们学习的神经姿态分类器通常优于基线支持向量机,但作者嵌入预训练在SemEval 2016 6A推文姿态分类任务的五个领域中有四个领域比非预训练的神经网络得到了改进。在推特枪支管制姿态分类数据集中,预训练的改进仅在训练数据有限时才明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信