{"title":"Electrocardiogram Dynamic Interval Feature Extraction for Heartbeat Characterization","authors":"A. Verma, I. Saini, B. Saini","doi":"10.4018/978-1-5225-7952-6.CH012","DOIUrl":null,"url":null,"abstract":"In the chapter, dynamic time domain features are extracted in the proposed approach for the accurate classification of electrocardiogram (ECG) heartbeats. The dynamic time-domain information such as RR, pre-RR, post-RR, ratio of pre-post RR, and ratio of post-pre RR intervals to be extracted from the ECG beats in proposed approach for heartbeat classification. These four extracted features are combined and fed to k-nearest neighbor (k-NN) classifier with tenfold cross-validation to classify the six different heartbeats (i.e., normal [N], right bundle branch block [RBBB], left bundle branch block [LBBB], atrial premature beat [APC], paced beat [PB], and premature ventricular contraction[PVC]). The average sensitivity, specificity, positive predictivity along with overall accuracy is obtained as 99.77%, 99.97%, 99.71%, and 99.85%, respectively, for the proposed classification system. The experimental result tells that proposed classification approach has given better performance as compared with other state-of-the-art feature extraction methods for the heartbeat characterization.","PeriodicalId":416673,"journal":{"name":"Medical Data Security for Bioengineers","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Data Security for Bioengineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7952-6.CH012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the chapter, dynamic time domain features are extracted in the proposed approach for the accurate classification of electrocardiogram (ECG) heartbeats. The dynamic time-domain information such as RR, pre-RR, post-RR, ratio of pre-post RR, and ratio of post-pre RR intervals to be extracted from the ECG beats in proposed approach for heartbeat classification. These four extracted features are combined and fed to k-nearest neighbor (k-NN) classifier with tenfold cross-validation to classify the six different heartbeats (i.e., normal [N], right bundle branch block [RBBB], left bundle branch block [LBBB], atrial premature beat [APC], paced beat [PB], and premature ventricular contraction[PVC]). The average sensitivity, specificity, positive predictivity along with overall accuracy is obtained as 99.77%, 99.97%, 99.71%, and 99.85%, respectively, for the proposed classification system. The experimental result tells that proposed classification approach has given better performance as compared with other state-of-the-art feature extraction methods for the heartbeat characterization.