{"title":"Towards robust face recognition from video","authors":"J. R. Price, T. Gee","doi":"10.1109/AIPR.2001.991209","DOIUrl":null,"url":null,"abstract":"A novel, template-based method for face recognition is presented. The goals of the proposed method are to integrate multiple observations for improved robustness and to provide auxiliary confidence data for subsequent use in an automated video surveillance system. The proposed framework consists of a parallel system of classifiers, referred to as observers, where each observer is trained on one face region. The observer outputs are combined to yield the final recognition result. Three of the four confounding factors expression, illumination, and decoration-are specifically addressed in this paper The extension of the proposed approach to address the fourth confounding factor-pose-is straightforward and well supported in previous work. A further contribution of the proposed approach is the computation of a revealing confidence measure. This confidence measure will aid the subsequent application of the proposed method to video surveillance scenarios. Results are reported for a database comprising 676 images of 160 subjects under a variety of challenging circumstances. These results indicate significant performance improvements over previous methods and demonstrate the usefulness of the confidence data.","PeriodicalId":277181,"journal":{"name":"Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2001.991209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
A novel, template-based method for face recognition is presented. The goals of the proposed method are to integrate multiple observations for improved robustness and to provide auxiliary confidence data for subsequent use in an automated video surveillance system. The proposed framework consists of a parallel system of classifiers, referred to as observers, where each observer is trained on one face region. The observer outputs are combined to yield the final recognition result. Three of the four confounding factors expression, illumination, and decoration-are specifically addressed in this paper The extension of the proposed approach to address the fourth confounding factor-pose-is straightforward and well supported in previous work. A further contribution of the proposed approach is the computation of a revealing confidence measure. This confidence measure will aid the subsequent application of the proposed method to video surveillance scenarios. Results are reported for a database comprising 676 images of 160 subjects under a variety of challenging circumstances. These results indicate significant performance improvements over previous methods and demonstrate the usefulness of the confidence data.