Confidence estimation of the covariance function of stationary and locally stationary processes

M. Giurcanu, V. Spokoiny
{"title":"Confidence estimation of the covariance function of stationary and locally stationary processes","authors":"M. Giurcanu, V. Spokoiny","doi":"10.1524/stnd.22.4.283.64315","DOIUrl":null,"url":null,"abstract":"Summury In this note we consider the problem of confidence estimation of the covariance function of a stationary or locally stationary zero mean Gaussian process. The constructed confidence intervals are based on the usual empirical covariance estimate and a special estimate of its variance. The results about coverage probability are stated in a nonasymptotic way and apply for small and moderate sample size under mild conditions on the model. The presented numerical results are in agreement with the theoretical issues and demonstrate applicability of the method.","PeriodicalId":380446,"journal":{"name":"Statistics & Decisions","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1524/stnd.22.4.283.64315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Summury In this note we consider the problem of confidence estimation of the covariance function of a stationary or locally stationary zero mean Gaussian process. The constructed confidence intervals are based on the usual empirical covariance estimate and a special estimate of its variance. The results about coverage probability are stated in a nonasymptotic way and apply for small and moderate sample size under mild conditions on the model. The presented numerical results are in agreement with the theoretical issues and demonstrate applicability of the method.
平稳和局部平稳过程的协方差函数的置信度估计
本文考虑平稳或局部平稳零均值高斯过程的协方差函数的置信度估计问题。构造的置信区间是基于通常的经验协方差估计及其方差的特殊估计。覆盖概率的结果以非渐近的方式表述,适用于温和条件下的小样本和中等样本量的模型。给出的数值结果与理论问题一致,证明了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信