Automated Skin Lesion Segmentation using VGG-UNet

Anwar Jimi, Hind Abouche, Nabila Zrira, Ibtissam Benmiloud
{"title":"Automated Skin Lesion Segmentation using VGG-UNet","authors":"Anwar Jimi, Hind Abouche, Nabila Zrira, Ibtissam Benmiloud","doi":"10.1109/ASONAM55673.2022.10068634","DOIUrl":null,"url":null,"abstract":"Skin cancer is a serious worldwide health worry with high mortality rates and high grimness. For this reason, to successfully diagnose skin lesions, a computer-aided automatic diagnostic system is required. One of the most crucial methods to do that is the segmentation of skin lesions. In this paper, we present a new model that integrates two architectures, the U-Net and the VGG19. Furthermore, to improve the results of segmentation, we also employ image preprocessing, including the Dull-Razor algorithm for hair removal and Contrast Limited Adaptive Histogram Equalization (CLAHE) to improve the image contrast. Moreover, we evaluated our model on three datasets: ISIC 2016, ISIC 2017, and ISIC 2018. Our suggested model achieved satisfactory results compared to the state-of-the-art.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Skin cancer is a serious worldwide health worry with high mortality rates and high grimness. For this reason, to successfully diagnose skin lesions, a computer-aided automatic diagnostic system is required. One of the most crucial methods to do that is the segmentation of skin lesions. In this paper, we present a new model that integrates two architectures, the U-Net and the VGG19. Furthermore, to improve the results of segmentation, we also employ image preprocessing, including the Dull-Razor algorithm for hair removal and Contrast Limited Adaptive Histogram Equalization (CLAHE) to improve the image contrast. Moreover, we evaluated our model on three datasets: ISIC 2016, ISIC 2017, and ISIC 2018. Our suggested model achieved satisfactory results compared to the state-of-the-art.
基于VGG-UNet的自动皮肤病变分割
皮肤癌是一个严重的全球健康问题,死亡率高,发病率高。因此,为了成功地诊断皮肤病变,需要一个计算机辅助的自动诊断系统。其中最关键的方法之一是皮肤损伤的分割。在本文中,我们提出了一个新的模型,它集成了两种架构,U-Net和VGG19。此外,为了改善分割结果,我们还采用了图像预处理,包括使用Dull-Razor算法进行脱毛和对比度有限自适应直方图均衡化(CLAHE)来提高图像对比度。此外,我们在三个数据集上评估了我们的模型:ISIC 2016、ISIC 2017和ISIC 2018。与最先进的模型相比,我们建议的模型取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信