On Semantic Organization and Fusion of Trajectory Data

Zhimin Chen, Xingang Wang, Heng Li, Hu Wang
{"title":"On Semantic Organization and Fusion of Trajectory Data","authors":"Zhimin Chen, Xingang Wang, Heng Li, Hu Wang","doi":"10.1109/COMPSAC48688.2020.0-130","DOIUrl":null,"url":null,"abstract":"With the proliferation of positioning mobile devices, people’s trajectory data are posted on the net including spatial locations and semantic contexts such as in the form of text like twitter posted text. How to organize or fuse the raw spatial trajectories and context semantic data into a structured whole for analysis further is a problem, the focus of which is mostly how to annotate episodes in raw trajectories. In this paper we examine a structured and partially self-describing way for semantic organization and fusion of trajectory data. We annotate episodes with structured sentiments, events, or topic words, where sentiments given in a self-describing way and events are represented using the form from the natural language processing literature. Besides, all the data in the whole model are represented with JSON.","PeriodicalId":430098,"journal":{"name":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC48688.2020.0-130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the proliferation of positioning mobile devices, people’s trajectory data are posted on the net including spatial locations and semantic contexts such as in the form of text like twitter posted text. How to organize or fuse the raw spatial trajectories and context semantic data into a structured whole for analysis further is a problem, the focus of which is mostly how to annotate episodes in raw trajectories. In this paper we examine a structured and partially self-describing way for semantic organization and fusion of trajectory data. We annotate episodes with structured sentiments, events, or topic words, where sentiments given in a self-describing way and events are represented using the form from the natural language processing literature. Besides, all the data in the whole model are represented with JSON.
轨迹数据的语义组织与融合研究
随着定位移动设备的普及,人们的轨迹数据被发布到网络上,包括空间位置和语义语境,如twitter发布文本的文本形式。如何将原始空间轨迹和上下文语义数据组织或融合成一个结构化的整体以供进一步分析是一个问题,其重点是如何对原始轨迹中的情节进行注释。本文研究了一种结构化和部分自描述的轨迹数据语义组织和融合方法。我们用结构化的情感、事件或主题词注释情节,其中情感以自我描述的方式给出,事件使用自然语言处理文献中的形式表示。此外,整个模型中的所有数据都用JSON表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信