Increasing Efficiency of Evolutionary Algorithms by Choosing between Auxiliary Fitness Functions with Reinforcement Learning

Arina Buzdalova, M. Buzdalov
{"title":"Increasing Efficiency of Evolutionary Algorithms by Choosing between Auxiliary Fitness Functions with Reinforcement Learning","authors":"Arina Buzdalova, M. Buzdalov","doi":"10.1109/ICMLA.2012.32","DOIUrl":null,"url":null,"abstract":"In this paper further investigation of the previously proposed method of speeding up single-objective evolutionary algorithms is done. The method is based on reinforcement learning which is used to choose auxiliary fitness functions. The requirements for this method are formulated. The compliance of the method with these requirements is illustrated on model problems such as Royal Roads problem and H-IFF optimization problem. The experiments confirm that the method increases the efficiency of evolutionary algorithms.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

In this paper further investigation of the previously proposed method of speeding up single-objective evolutionary algorithms is done. The method is based on reinforcement learning which is used to choose auxiliary fitness functions. The requirements for this method are formulated. The compliance of the method with these requirements is illustrated on model problems such as Royal Roads problem and H-IFF optimization problem. The experiments confirm that the method increases the efficiency of evolutionary algorithms.
基于强化学习的辅助适应度函数选择提高进化算法的效率
本文对先前提出的加速单目标进化算法的方法进行了进一步的研究。该方法基于强化学习来选择辅助适应度函数。阐述了该方法的要求。通过皇家道路问题和H-IFF优化问题等模型问题说明了该方法符合这些要求。实验证明,该方法提高了进化算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信