Accurate IoT Device Identification from Merely Packet Length

Yizhen Sun, Shupo Fu, Shigeng Zhang, Hongyu Zhu, Yongfa Li
{"title":"Accurate IoT Device Identification from Merely Packet Length","authors":"Yizhen Sun, Shupo Fu, Shigeng Zhang, Hongyu Zhu, Yongfa Li","doi":"10.1109/MSN50589.2020.00132","DOIUrl":null,"url":null,"abstract":"With the massive deployment of IoT devices, the management of IoT devices becomes more and more important. In this paper, We only need the packet length the device sent to serves in 180s to identify the device. We evaluated the algorithms K-Nearest Neighbor, Random Forest, Suport Vector Machine and Multilayer Perceptron for classification. The results show that the Random Forest is the best and can achieve 99.6% if accuracy in the identification of devices. We also ranked the importance of 10 features related to packet length. Using the five most important features (media, mean, skewness, absolute energy, standard deviation and of packet length), we can achieve 99.5% accuracy on the public dataset and 99.29% accuracy on our dataset.","PeriodicalId":447605,"journal":{"name":"2020 16th International Conference on Mobility, Sensing and Networking (MSN)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th International Conference on Mobility, Sensing and Networking (MSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSN50589.2020.00132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the massive deployment of IoT devices, the management of IoT devices becomes more and more important. In this paper, We only need the packet length the device sent to serves in 180s to identify the device. We evaluated the algorithms K-Nearest Neighbor, Random Forest, Suport Vector Machine and Multilayer Perceptron for classification. The results show that the Random Forest is the best and can achieve 99.6% if accuracy in the identification of devices. We also ranked the importance of 10 features related to packet length. Using the five most important features (media, mean, skewness, absolute energy, standard deviation and of packet length), we can achieve 99.5% accuracy on the public dataset and 99.29% accuracy on our dataset.
仅从数据包长度就能准确识别物联网设备
随着物联网设备的大规模部署,物联网设备的管理变得越来越重要。在本文中,我们只需要设备发送到服务的数据包长度(180秒)来识别设备。我们评估了k -最近邻、随机森林、支持向量机和多层感知机的分类算法。结果表明,随机森林方法在设备识别中的准确率达到99.6%,是一种较好的方法。我们还对与数据包长度相关的10个特性的重要性进行了排序。使用五个最重要的特征(媒体、平均值、偏度、绝对能量、标准差和数据包长度),我们可以在公共数据集上达到99.5%的准确率,在我们的数据集上达到99.29%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信