{"title":"Automated Optical Inspection for Printed Circuit Board Assembly Manufacturing with Transfer Learning and Synthetic Data Generation","authors":"Syed Saad Saif, Kerem Aras, A. Giuseppi","doi":"10.1109/MED54222.2022.9837280","DOIUrl":null,"url":null,"abstract":"Automated Optical Inspection (AOI) is among the most common and effective quality checks employed in production lines. This paper details the design of a Deep Learning solution that was developed for addressing a specific quality control in a Printed Circuit Board Assembly (PCBA) manufacturing process. The developed Deep Neural Network exploits transfer learning and a synthetic data generation process to be trained even if the quantity of the data samples available is low. The overall AOI system was designed to be deployed on low-cost hardware with limited computing capabilities to ease its deployment in industrial settings.","PeriodicalId":354557,"journal":{"name":"2022 30th Mediterranean Conference on Control and Automation (MED)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED54222.2022.9837280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Automated Optical Inspection (AOI) is among the most common and effective quality checks employed in production lines. This paper details the design of a Deep Learning solution that was developed for addressing a specific quality control in a Printed Circuit Board Assembly (PCBA) manufacturing process. The developed Deep Neural Network exploits transfer learning and a synthetic data generation process to be trained even if the quantity of the data samples available is low. The overall AOI system was designed to be deployed on low-cost hardware with limited computing capabilities to ease its deployment in industrial settings.