Rost’s Chain Lemma

Christian Haesemeyer, Charles A. Weibel
{"title":"Rost’s Chain Lemma","authors":"Christian Haesemeyer, Charles A. Weibel","doi":"10.2307/j.ctv941tx2.14","DOIUrl":null,"url":null,"abstract":"This chapter states and proves Rost's Chain Lemma. The proof (due to Markus Rost) does not use the inductive assumption that BL(n − 1) holds. Throughout this chapter, 𝓁 is a fixed prime, and 𝑘 is a field containing 1/𝓁 and all 𝓁th roots of unity. It fixes an integer 𝑛 ≥ 2 and an 𝑛-tuple (𝑎1, ..., 𝑎𝑛) of units in 𝑘, such that the symbol ª = {𝑎1, ..., 𝑎𝑛} is nontrivial in the Milnor 𝐾-group 𝐾𝑀\n 𝑛(𝑘)/𝓁. The chapter produces the statement of the Chain Lemma by first proving the special case 𝑛 = 2. The notion of an 𝓁-form on a locally free sheaf over 𝑆 is then introduced, before the chapter shows how 𝓁-forms may be used to define elements of 𝐾𝑀\n 𝑛(𝑘(𝑆))/𝓁.","PeriodicalId":145287,"journal":{"name":"The Norm Residue Theorem in Motivic Cohomology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Norm Residue Theorem in Motivic Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv941tx2.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter states and proves Rost's Chain Lemma. The proof (due to Markus Rost) does not use the inductive assumption that BL(n − 1) holds. Throughout this chapter, 𝓁 is a fixed prime, and 𝑘 is a field containing 1/𝓁 and all 𝓁th roots of unity. It fixes an integer 𝑛 ≥ 2 and an 𝑛-tuple (𝑎1, ..., 𝑎𝑛) of units in 𝑘, such that the symbol ª = {𝑎1, ..., 𝑎𝑛} is nontrivial in the Milnor 𝐾-group 𝐾𝑀 𝑛(𝑘)/𝓁. The chapter produces the statement of the Chain Lemma by first proving the special case 𝑛 = 2. The notion of an 𝓁-form on a locally free sheaf over 𝑆 is then introduced, before the chapter shows how 𝓁-forms may be used to define elements of 𝐾𝑀 𝑛(𝑘(𝑆))/𝓁.
罗斯特链式引理
本章陈述并证明了罗斯特的链式引理。这个证明(由于Markus Rost)没有使用BL(n−1)成立的归纳假设。在本章中,𝓁是一个固定的素数,而𝑘是一个包含1/𝓁和所有𝓁th统一根的域。它固定了一个整数𝑛≥2和一个𝑛-tuple(𝑎1,…,𝑎𝑘𝑛)的单位,这样象征ª={𝑎1,……,𝑎𝑛}是重要的米尔诺尔𝐾-group𝐾𝑀𝑛(𝑘)/𝓁。本章通过首先证明特殊情况𝑛= 2得出链引理的命题。在本章展示如何使用𝓁-forms来定义𝐾𝑀𝑛(𝑘(𝑆))/𝓁的元素之前,在𝑆上的本地自由束上引入𝓁-form的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信