{"title":"Rost’s Chain Lemma","authors":"Christian Haesemeyer, Charles A. Weibel","doi":"10.2307/j.ctv941tx2.14","DOIUrl":null,"url":null,"abstract":"This chapter states and proves Rost's Chain Lemma. The proof (due to Markus Rost) does not use the inductive assumption that BL(n − 1) holds. Throughout this chapter, 𝓁 is a fixed prime, and 𝑘 is a field containing 1/𝓁 and all 𝓁th roots of unity. It fixes an integer 𝑛 ≥ 2 and an 𝑛-tuple (𝑎1, ..., 𝑎𝑛) of units in 𝑘, such that the symbol ª = {𝑎1, ..., 𝑎𝑛} is nontrivial in the Milnor 𝐾-group 𝐾𝑀\n 𝑛(𝑘)/𝓁. The chapter produces the statement of the Chain Lemma by first proving the special case 𝑛 = 2. The notion of an 𝓁-form on a locally free sheaf over 𝑆 is then introduced, before the chapter shows how 𝓁-forms may be used to define elements of 𝐾𝑀\n 𝑛(𝑘(𝑆))/𝓁.","PeriodicalId":145287,"journal":{"name":"The Norm Residue Theorem in Motivic Cohomology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Norm Residue Theorem in Motivic Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv941tx2.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter states and proves Rost's Chain Lemma. The proof (due to Markus Rost) does not use the inductive assumption that BL(n − 1) holds. Throughout this chapter, 𝓁 is a fixed prime, and 𝑘 is a field containing 1/𝓁 and all 𝓁th roots of unity. It fixes an integer 𝑛 ≥ 2 and an 𝑛-tuple (𝑎1, ..., 𝑎𝑛) of units in 𝑘, such that the symbol ª = {𝑎1, ..., 𝑎𝑛} is nontrivial in the Milnor 𝐾-group 𝐾𝑀
𝑛(𝑘)/𝓁. The chapter produces the statement of the Chain Lemma by first proving the special case 𝑛 = 2. The notion of an 𝓁-form on a locally free sheaf over 𝑆 is then introduced, before the chapter shows how 𝓁-forms may be used to define elements of 𝐾𝑀
𝑛(𝑘(𝑆))/𝓁.