PERFORMA TEKNIK REGULARISASI DALAM PENANGANAN MASALAH MULTIKOLINIERITAS

Alin Febianti Fikri, Winalia Agwil, Dian Agustina
{"title":"PERFORMA TEKNIK REGULARISASI DALAM PENANGANAN MASALAH MULTIKOLINIERITAS","authors":"Alin Febianti Fikri, Winalia Agwil, Dian Agustina","doi":"10.33369/diophantine.v2i01.28480","DOIUrl":null,"url":null,"abstract":"Multikolinieritas adalah kondisi terdapat hubungan linier antar variabel independen, dimana diantara variabel independen tersebut saling berkorelasi. Akibatnya akan sulit untuk melihat pengaruh variabel independen terhadap variabel dependen. Penanganan multikolinieritas salah satunya dapat dilakukan menggunakan teknik regularisasi yaitu bentuk regresi yang mengatur atau menyusutkan perkiraan koefisien menuju nol. Teknik regularisasi yang akan dibahas pada penelitian adalah regresi ridge, LASSO dan elastic net. Regresi ridge hanya dapat menyusutkan koefisien regresi menuju angka 0, tetapi tidak pernah tepat ke angka 0. Regresi elastic net dapat menyusutkan koefisien regresi tepat nol, melakukan seleksi variabel secara simultan dan dapat memilih kelompok peubah yang berkorelasi. Sedangkan, regresi LASSO hanya dapat menyusutkan koefisien dan menetapkan koefisien ke angka 0. Oleh karena itu, LASSO dapat menghasilkan model dengan variabel terbaik. Namun, LASSO memiliki beberapa kelemahan. Ketika jumlah variabel independent lebih kecil dibanding jumlah amatan, kinerja LASSO lebih didominasi oleh ridge. Ketika jumlah variabel independent lebih besar dibanding jumlah amatan, maka LASSO hanya memilih n variabel yang diikutkan dalam model. Sehingga, untuk mengatasi high dimensional data yang mengandung multikolinieritas dilakukan penelitian menggunakan teknik regularisasi regresi ridge, LASSO dan elastic net untuk dibandingkan kebaikan modelnya berdasarkan nilai MSE terkecil. Data yang digunakan merupakan data simulasi dan studi kasus dari website resmi BPS serta UCI machine learning repository. Disimpulkan bahwa dari 30 pengacakan, model ridge baik memodelkan dataset dengan p = 20, 40, dan 80 atau kondisi dataset dimana jumlah variabel independent lebih kecil dibanding jumlah amatan dan elastic net baik memodelkan dataset dengan p = 100, 160, dan320.","PeriodicalId":330009,"journal":{"name":"Diophantine Journal of Mathematics and Its Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diophantine Journal of Mathematics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33369/diophantine.v2i01.28480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multikolinieritas adalah kondisi terdapat hubungan linier antar variabel independen, dimana diantara variabel independen tersebut saling berkorelasi. Akibatnya akan sulit untuk melihat pengaruh variabel independen terhadap variabel dependen. Penanganan multikolinieritas salah satunya dapat dilakukan menggunakan teknik regularisasi yaitu bentuk regresi yang mengatur atau menyusutkan perkiraan koefisien menuju nol. Teknik regularisasi yang akan dibahas pada penelitian adalah regresi ridge, LASSO dan elastic net. Regresi ridge hanya dapat menyusutkan koefisien regresi menuju angka 0, tetapi tidak pernah tepat ke angka 0. Regresi elastic net dapat menyusutkan koefisien regresi tepat nol, melakukan seleksi variabel secara simultan dan dapat memilih kelompok peubah yang berkorelasi. Sedangkan, regresi LASSO hanya dapat menyusutkan koefisien dan menetapkan koefisien ke angka 0. Oleh karena itu, LASSO dapat menghasilkan model dengan variabel terbaik. Namun, LASSO memiliki beberapa kelemahan. Ketika jumlah variabel independent lebih kecil dibanding jumlah amatan, kinerja LASSO lebih didominasi oleh ridge. Ketika jumlah variabel independent lebih besar dibanding jumlah amatan, maka LASSO hanya memilih n variabel yang diikutkan dalam model. Sehingga, untuk mengatasi high dimensional data yang mengandung multikolinieritas dilakukan penelitian menggunakan teknik regularisasi regresi ridge, LASSO dan elastic net untuk dibandingkan kebaikan modelnya berdasarkan nilai MSE terkecil. Data yang digunakan merupakan data simulasi dan studi kasus dari website resmi BPS serta UCI machine learning repository. Disimpulkan bahwa dari 30 pengacakan, model ridge baik memodelkan dataset dengan p = 20, 40, dan 80 atau kondisi dataset dimana jumlah variabel independent lebih kecil dibanding jumlah amatan dan elastic net baik memodelkan dataset dengan p = 100, 160, dan320.
多科林主义问题处理中重组技术的作用
多对偶变量是独立变量之间的线性关系,这些变量之间相互关联。因此,很难看到独立变量对依赖变量的影响。多生发处理方法之一是使用一种重组技术,即调节或将系数估计降低到零的回购方式。研究将讨论的重组技术是脊回归、套索和弹性网络。脊回归只能缩小到0,但绝不能精确到0。弹性网络回归可以缩小零点回归系数,同时进行变量选择,并选择相关的变量选择组。另一方面,套索的退化只能缩小系数并将系数降低到0。因此,套索可以生成最好的可变模型。然而,套索有一些弱点。当独立变量的数量小于a黏性时,套索的表现更受山脊的控制。当独立式变量的数量大于在例数时,套索只选择模型中包含的n个变量。因此,为了解决包含多元多元数据的高维度数据,研究采用了脊、LASSO和弹性网络回归技术,将其模型的优点与最小的MSE值进行比较。使用的数据是官方BPS网站和UCI学习设备的模拟和案例研究数据。结论是,在30次尝试中,ridge模型的模型要么用p = 20 40和80或80来模拟数据,在这些数据中,独立变量的数量小于apro和弹性网络的数量,要么用p = 100,160和320来模拟数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信