Assessement of current health of hard disk drives

S. Kamarthi, A. Zeid, Y. Bagul
{"title":"Assessement of current health of hard disk drives","authors":"S. Kamarthi, A. Zeid, Y. Bagul","doi":"10.1109/COASE.2009.5234105","DOIUrl":null,"url":null,"abstract":"After investigating several of different degradation signatures that can potentially characterize aging and failure of computer hard disk drives (HDDs), we identified that reported uncorrect, hardware ECC recovered and read write rate parameters can provide good degradation signature for assessing the condition and remaining useful life of HDDs. Using these signatures as inputs, we develop a neural network model to assess the current health of a HDD. We collected extensive data by conducting experiments on 13 HDDs in an accelerated degradation mode. Experiments on 13 HDDs generated several hundreds of data points during their operating life. We used two thirds of these data points for computing the neural network parameters and the rest for evaluating the accuracy of model predictions. The results indicate that the trained neural network is able to assess the health of a HDD correctly 88 times out of 100 instances.","PeriodicalId":386046,"journal":{"name":"2009 IEEE International Conference on Automation Science and Engineering","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2009.5234105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

After investigating several of different degradation signatures that can potentially characterize aging and failure of computer hard disk drives (HDDs), we identified that reported uncorrect, hardware ECC recovered and read write rate parameters can provide good degradation signature for assessing the condition and remaining useful life of HDDs. Using these signatures as inputs, we develop a neural network model to assess the current health of a HDD. We collected extensive data by conducting experiments on 13 HDDs in an accelerated degradation mode. Experiments on 13 HDDs generated several hundreds of data points during their operating life. We used two thirds of these data points for computing the neural network parameters and the rest for evaluating the accuracy of model predictions. The results indicate that the trained neural network is able to assess the health of a HDD correctly 88 times out of 100 instances.
评估硬盘驱动器的当前运行状况
在研究了几种可能表征计算机硬盘驱动器(hdd)老化和故障的不同退化特征之后,我们发现报告的不正确、硬件ECC恢复和读写速率参数可以为评估hdd的状态和剩余使用寿命提供良好的退化特征。使用这些特征作为输入,我们开发了一个神经网络模型来评估硬盘的当前健康状况。我们在加速退化模式下对13个hdd进行了实验,收集了大量数据。在13个硬盘上进行的实验在其使用寿命期间产生了数百个数据点。我们使用这些数据点的三分之二来计算神经网络参数,其余的用于评估模型预测的准确性。结果表明,经过训练的神经网络能够在100个实例中正确评估硬盘驱动器的健康状况88次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信