DeepVerge: Classification of Roadside Verge Biodiversity and Conservation Potential

Andrew J. Perrett, C. Barnes, M. Schofield, L. Qie, Petra Bosilj, James M. Brown
{"title":"DeepVerge: Classification of Roadside Verge Biodiversity and Conservation Potential","authors":"Andrew J. Perrett, C. Barnes, M. Schofield, L. Qie, Petra Bosilj, James M. Brown","doi":"10.48550/arXiv.2206.04271","DOIUrl":null,"url":null,"abstract":"Open space grassland is being increasingly farmed or built upon, leading to a ramping up of conservation efforts targeting roadside verges. Approximately half of all UK grassland species can be found along the country's 500,000 km of roads, with some 91 species either threatened or near threatened. Careful management of these\"wildlife corridors\"is therefore essential to preventing species extinction and maintaining biodiversity in grassland habitats. Wildlife trusts have often enlisted the support of volunteers to survey roadside verges and identify new\"Local Wildlife Sites\"as areas of high conservation potential. Using volunteer survey data from 3,900 km of roadside verges alongside publicly available street-view imagery, we present DeepVerge; a deep learning-based method that can automatically survey sections of roadside verges by detecting the presence of positive indicator species. Using images and ground truth survey data from the rural county of Lincolnshire, DeepVerge achieved a mean accuracy of 88%. Such a method may be used by local authorities to identify new local wildlife sites, and aid management and environmental planning in line with legal and government policy obligations, saving thousands of hours of manual labour.","PeriodicalId":309282,"journal":{"name":"Comput. Environ. Urban Syst.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Environ. Urban Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.04271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Open space grassland is being increasingly farmed or built upon, leading to a ramping up of conservation efforts targeting roadside verges. Approximately half of all UK grassland species can be found along the country's 500,000 km of roads, with some 91 species either threatened or near threatened. Careful management of these"wildlife corridors"is therefore essential to preventing species extinction and maintaining biodiversity in grassland habitats. Wildlife trusts have often enlisted the support of volunteers to survey roadside verges and identify new"Local Wildlife Sites"as areas of high conservation potential. Using volunteer survey data from 3,900 km of roadside verges alongside publicly available street-view imagery, we present DeepVerge; a deep learning-based method that can automatically survey sections of roadside verges by detecting the presence of positive indicator species. Using images and ground truth survey data from the rural county of Lincolnshire, DeepVerge achieved a mean accuracy of 88%. Such a method may be used by local authorities to identify new local wildlife sites, and aid management and environmental planning in line with legal and government policy obligations, saving thousands of hours of manual labour.
DeepVerge:路边边缘生物多样性分类及其保护潜力
越来越多的人在露天草地上耕作或修建草地,导致针对路边边缘的保护工作不断加强。在英国50万公里的公路沿线,可以找到大约一半的草地物种,其中约91种受到威胁或接近威胁。因此,仔细管理这些“野生动物走廊”对于防止物种灭绝和维持草原栖息地的生物多样性至关重要。野生动物信托基金经常得到志愿者的支持,调查路边边缘,并确定新的“当地野生动物保护区”,作为高保护潜力的地区。利用来自3900公里路边边缘的志愿者调查数据以及公开的街景图像,我们展示了DeepVerge;一种基于深度学习的方法,可以通过检测积极指示物种的存在来自动测量路边边缘的部分。DeepVerge使用林肯郡农村地区的图像和地面真相调查数据,平均准确率达到88%。地方当局可以使用这种方法来确定新的当地野生动物保护区,并根据法律和政府政策义务协助管理和环境规划,从而节省数千小时的体力劳动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信