Accelerating Dynamics Simulation of Solidification Processes of Liquid Metals Using GPU with CUDA

Jie Liang, Kenli Li, Lin Shi, Yingqiang Liao
{"title":"Accelerating Dynamics Simulation of Solidification Processes of Liquid Metals Using GPU with CUDA","authors":"Jie Liang, Kenli Li, Lin Shi, Yingqiang Liao","doi":"10.1109/IPDPSW.2013.84","DOIUrl":null,"url":null,"abstract":"Molecular dynamics simulation is a powerful tool to simulate and analyze complex physical processes and phenomena at atomic characteristic for predicting the natural time-evolution of a system of atoms. Precise simulation of processes such as liquid metal solidification processes simulation has strong requirements both in the simulation size and computing timescale. Therefore, finding available computing resources is crucial to accelerate computation of solidification processes simulations. This paper presents a new approach to accelerate calculation of liquid metal solidification processes based on the previous study implemented on the CPU clusters, where the GPU-based MD (molecular dynamics) algorithm using a fine-grained spatial decomposition method enlarge the scale of the simulation system to a simulation system involving 10, 000, 000 atoms. The algorithms are implemented using FORTRAN and CUDA on a commodity NVIDIA Tesla M2050 card, where experimental results demonstrate that GPU-based calculations are typically 9~11 times faster than the corresponding sequential execution and approximately 1.5~2 times faster than 16-CPU clusters implementations.","PeriodicalId":234552,"journal":{"name":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2013.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Molecular dynamics simulation is a powerful tool to simulate and analyze complex physical processes and phenomena at atomic characteristic for predicting the natural time-evolution of a system of atoms. Precise simulation of processes such as liquid metal solidification processes simulation has strong requirements both in the simulation size and computing timescale. Therefore, finding available computing resources is crucial to accelerate computation of solidification processes simulations. This paper presents a new approach to accelerate calculation of liquid metal solidification processes based on the previous study implemented on the CPU clusters, where the GPU-based MD (molecular dynamics) algorithm using a fine-grained spatial decomposition method enlarge the scale of the simulation system to a simulation system involving 10, 000, 000 atoms. The algorithms are implemented using FORTRAN and CUDA on a commodity NVIDIA Tesla M2050 card, where experimental results demonstrate that GPU-based calculations are typically 9~11 times faster than the corresponding sequential execution and approximately 1.5~2 times faster than 16-CPU clusters implementations.
基于GPU和CUDA的液态金属凝固过程加速动力学仿真
分子动力学模拟是模拟和分析原子特征的复杂物理过程和现象,预测原子系统自然时间演化的有力工具。金属液态凝固过程的精确模拟无论是在模拟规模上还是在计算时间尺度上都有很强的要求。因此,寻找可用的计算资源是加快凝固过程模拟计算的关键。本文在前人研究的基础上,提出了一种在CPU集群上实现的加速液态金属凝固过程计算的新方法,其中基于gpu的分子动力学(MD)算法采用细粒度空间分解方法,将模拟系统的规模扩大到涉及1000万个原子的模拟系统。这些算法在NVIDIA Tesla M2050商用卡上使用FORTRAN和CUDA实现,实验结果表明,基于gpu的计算通常比相应的顺序执行快9~11倍,比16 cpu集群实现快约1.5~2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信