{"title":"Broad coverage paragraph segmentation across languages and domains","authors":"C. Sporleder, Mirella Lapata","doi":"10.1145/1149290.1151098","DOIUrl":null,"url":null,"abstract":"This article considers the problem of automatic paragraph segmentation. The task is relevant for speech-to-text applications whose output transcipts do not usually contain punctuation or paragraph indentation and are naturally difficult to read and process. Text-to-text generation applications (e.g., summarization) could also benefit from an automatic paragaraph segementation mechanism which indicates topic shifts and provides visual targets to the reader. We present a paragraph segmentation model which exploits a variety of knowledge sources (including textual cues, syntactic and discourse-related information) and evaluate its performance in different languages and domains. Our experiments demonstrate that the proposed approach significantly outperforms our baselines and in many cases comes to within a few percent of human performance. Finally, we integrate our method with a single document summarizer and show that it is useful for structuring the output of automatically generated text.","PeriodicalId":412532,"journal":{"name":"ACM Trans. Speech Lang. Process.","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Speech Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1149290.1151098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
This article considers the problem of automatic paragraph segmentation. The task is relevant for speech-to-text applications whose output transcipts do not usually contain punctuation or paragraph indentation and are naturally difficult to read and process. Text-to-text generation applications (e.g., summarization) could also benefit from an automatic paragaraph segementation mechanism which indicates topic shifts and provides visual targets to the reader. We present a paragraph segmentation model which exploits a variety of knowledge sources (including textual cues, syntactic and discourse-related information) and evaluate its performance in different languages and domains. Our experiments demonstrate that the proposed approach significantly outperforms our baselines and in many cases comes to within a few percent of human performance. Finally, we integrate our method with a single document summarizer and show that it is useful for structuring the output of automatically generated text.