Optimum-Path Forest in the classification of defects in Bovine Leather

W. P. Amorim, Felipe Silveira Brito Borges, Pache Marcio C. B., M. H. Carvalho, H. Pistori
{"title":"Optimum-Path Forest in the classification of defects in Bovine Leather","authors":"W. P. Amorim, Felipe Silveira Brito Borges, Pache Marcio C. B., M. H. Carvalho, H. Pistori","doi":"10.1109/WVC.2019.8876936","DOIUrl":null,"url":null,"abstract":"In this paper, the Optimum-Path Forest (OPF) classifier is applied in the classification of defects in cowhide, a problem of great evaluation complexity. The OPF classifier reduces a pattern classification problem to the problem of partitioning the vertices of a graph induced by its data set. The results revealed a competent performance compared to traditional classifiers, such as Support Vector Machines (SVM), Artificial Neural Networks-Perceptron Multilayer (MLP), Decision Trees (J48) and k-Nearest Neighbor (kNN).","PeriodicalId":144641,"journal":{"name":"2019 XV Workshop de Visão Computacional (WVC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 XV Workshop de Visão Computacional (WVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WVC.2019.8876936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the Optimum-Path Forest (OPF) classifier is applied in the classification of defects in cowhide, a problem of great evaluation complexity. The OPF classifier reduces a pattern classification problem to the problem of partitioning the vertices of a graph induced by its data set. The results revealed a competent performance compared to traditional classifiers, such as Support Vector Machines (SVM), Artificial Neural Networks-Perceptron Multilayer (MLP), Decision Trees (J48) and k-Nearest Neighbor (kNN).
牛皮革缺陷分类中的最优路径森林
本文将最优路径森林(OPF)分类器应用于牛皮缺陷的分类中,这是一个评价复杂度很高的问题。OPF分类器将模式分类问题简化为由其数据集引起的图的顶点划分问题。结果显示,与支持向量机(SVM)、多层人工神经网络感知器(MLP)、决策树(J48)和k-最近邻(kNN)等传统分类器相比,该分类器具有较强的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信