VideoEdge: Processing Camera Streams using Hierarchical Clusters

Chien-Chun Hung, G. Ananthanarayanan, P. Bodík, L. Golubchik, Minlan Yu, P. Bahl, Matthai Philipose
{"title":"VideoEdge: Processing Camera Streams using Hierarchical Clusters","authors":"Chien-Chun Hung, G. Ananthanarayanan, P. Bodík, L. Golubchik, Minlan Yu, P. Bahl, Matthai Philipose","doi":"10.1109/SEC.2018.00016","DOIUrl":null,"url":null,"abstract":"Organizations deploy a hierarchy of clusters - cameras, private clusters, public clouds - for analyzing live video feeds from their cameras. Video analytics queries have many implementation options which impact their resource demands and accuracy of outputs. Our objective is to select the \"query plan\" - implementations (and their knobs) - and place it across the hierarchy of clusters, and merge common components across queries to maximize the average query accuracy. This is a challenging task, because we have to consider multi-resource (network and compute) demands and constraints in the hierarchical cluster and search in an exponentially large search space for plans, placements, and merging. We propose VideoEdge, a system that introduces dominant demand to identify the best tradeoff between multiple resources and accuracy, and narrows the search space by identifying a \"Pareto band\" of promising configurations. VideoEdge also balances the resource benefits and accuracy penalty of merging queries. Deployment results show that VideoEdge improves accuracy by 25:4 and 5:4 compared to fair allocation of resources and a recent solution for video query planning (VideoStorm), respectively, and is within 6% of optimum.","PeriodicalId":376439,"journal":{"name":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"204","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC.2018.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 204

Abstract

Organizations deploy a hierarchy of clusters - cameras, private clusters, public clouds - for analyzing live video feeds from their cameras. Video analytics queries have many implementation options which impact their resource demands and accuracy of outputs. Our objective is to select the "query plan" - implementations (and their knobs) - and place it across the hierarchy of clusters, and merge common components across queries to maximize the average query accuracy. This is a challenging task, because we have to consider multi-resource (network and compute) demands and constraints in the hierarchical cluster and search in an exponentially large search space for plans, placements, and merging. We propose VideoEdge, a system that introduces dominant demand to identify the best tradeoff between multiple resources and accuracy, and narrows the search space by identifying a "Pareto band" of promising configurations. VideoEdge also balances the resource benefits and accuracy penalty of merging queries. Deployment results show that VideoEdge improves accuracy by 25:4 and 5:4 compared to fair allocation of resources and a recent solution for video query planning (VideoStorm), respectively, and is within 6% of optimum.
VideoEdge:使用分层集群处理摄像机流
组织部署了一个集群层次结构——摄像机、私有集群、公共云——用于分析来自摄像机的实时视频馈送。视频分析查询有许多实现选项,这些选项会影响其资源需求和输出的准确性。我们的目标是选择“查询计划”——实现(及其旋钮)——并将其放置在集群的层次结构中,并合并查询中的公共组件,以最大限度地提高平均查询精度。这是一项具有挑战性的任务,因为我们必须考虑分层集群中的多资源(网络和计算)需求和约束,并在指数级大的搜索空间中搜索计划、放置和合并。我们提出了VideoEdge,这是一个引入主导需求来识别多个资源和准确性之间的最佳权衡的系统,并通过识别有前途的配置的“帕累托带”来缩小搜索空间。VideoEdge还平衡了合并查询的资源优势和准确性损失。部署结果表明,与公平分配资源和最近的视频查询规划解决方案(VideoStorm)相比,VideoEdge的准确率分别提高了25:4和5:4,并且在最佳的6%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信