Asymmetry for dynamic fuzzy clustering models

M. Sato-Ilic, Yoshiharu Sato
{"title":"Asymmetry for dynamic fuzzy clustering models","authors":"M. Sato-Ilic, Yoshiharu Sato","doi":"10.1109/KES.1998.725898","DOIUrl":null,"url":null,"abstract":"This paper presents a clustering model which analyzes asymmetric similarity data through several times. In general, proximity data (for example, mobility data, input-output data, perceptual confusion data, etc.) are observed in an asymmetric form. If such data are obtained over several times, then 3-way data are constructed. In this paper, we focus on the clustering techniques for 3-way data and show that the proposed method can capture the properties of time difference and asymmetry between two objects in spite of the numbering of the clusters.","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.725898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a clustering model which analyzes asymmetric similarity data through several times. In general, proximity data (for example, mobility data, input-output data, perceptual confusion data, etc.) are observed in an asymmetric form. If such data are obtained over several times, then 3-way data are constructed. In this paper, we focus on the clustering techniques for 3-way data and show that the proposed method can capture the properties of time difference and asymmetry between two objects in spite of the numbering of the clusters.
动态模糊聚类模型的不对称性
本文提出了一种分次分析非对称相似度数据的聚类模型。一般来说,接近数据(例如,移动性数据、输入输出数据、感知混淆数据等)以不对称形式观察。如果多次获得这样的数据,则构造3路数据。本文对三向数据的聚类技术进行了研究,结果表明,尽管聚类数量多,但该方法仍能捕捉到两个目标之间的时间差和不对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信