An implementation of a multivariate discretization for supervised learning using Forestdisc

Maissae Haddouchi, A. Berrado
{"title":"An implementation of a multivariate discretization for supervised learning using Forestdisc","authors":"Maissae Haddouchi, A. Berrado","doi":"10.1145/3419604.3419772","DOIUrl":null,"url":null,"abstract":"Discretization is a key pre-processing step in Machine Learning that transforms continuous attributes into discrete ones, through different methods available in the literature. In this regard, this work provides the ForestDisc framework that discretizes data based on a supervised, multivariate and hybrid approach. It uses, at first, a splitting process relying on a tree learning ensemble to generate a large set of cut points. It then uses a merging process based on moment matching optimization, to transform this set into a reduced and representative one. ForestDisc is a non-parametric discretizer in the sense that it does not require the user to introduce any initial setting parameters. We implemented ForestDisc algorithm in the \"ForestDisc\" R package.","PeriodicalId":250715,"journal":{"name":"Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3419604.3419772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Discretization is a key pre-processing step in Machine Learning that transforms continuous attributes into discrete ones, through different methods available in the literature. In this regard, this work provides the ForestDisc framework that discretizes data based on a supervised, multivariate and hybrid approach. It uses, at first, a splitting process relying on a tree learning ensemble to generate a large set of cut points. It then uses a merging process based on moment matching optimization, to transform this set into a reduced and representative one. ForestDisc is a non-parametric discretizer in the sense that it does not require the user to introduce any initial setting parameters. We implemented ForestDisc algorithm in the "ForestDisc" R package.
用Forestdisc实现监督学习的多元离散化
离散化是机器学习中关键的预处理步骤,通过文献中可用的不同方法将连续属性转换为离散属性。在这方面,这项工作提供了基于监督、多元和混合方法离散数据的ForestDisc框架。首先,它使用一个依赖于树学习集成的分裂过程来生成一个大的切点集。然后利用基于矩匹配优化的归并过程,将该集合转化为约简后的具有代表性的集合。ForestDisc是一种非参数离散器,它不需要用户引入任何初始设置参数。我们在“ForestDisc”R包中实现了ForestDisc算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信